高等数学 2.2 函数的求导法则

1、常数和基本初等函数的导数公式

公式公式
(1) ( C ) ′ = 0 (C)' = 0 (C)=0(2) ( x μ ) ′ = μ x μ − 1 (x^{\mu})' = \mu x^{\mu - 1} (xμ)=μxμ1
(3) ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)' = \cos x (sinx)=cosx(4) ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)' = - \sin x (cosx)=sinx
(5) ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)' = \sec^2 x (tanx)=sec2x(6) ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)' = - \csc^2 x (cotx)=csc2x
(7) ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)' = \sec x \tan x (secx)=secxtanx(8) ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)' = - \csc x \cot x (cscx)=cscxcotx
(9) ( a x ) ′ = a x ln ⁡ a (a^x)' = a^x \ln a (ax)=axlna(10) ( e x ) ′ = e x (\mathrm{e}^x)' = \mathrm{e}^x (ex)=ex
(11) ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_a x)' = \cfrac{1}{x \ln a} (logax)=xlna1(12) ( ln ⁡ x ) ’ = 1 x (\ln x)’ = \cfrac{1}{x} (lnx)=x1
(13) ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \cfrac{1}{\sqrt{1 - x^2}} (arcsinx)=1x2 1(14) ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = - \cfrac{1}{\sqrt{1 - x^2}} (arccosx)=1x2 1
(15) ( arctan ⁡ x ) ’ = 1 1 + x 2 (\arctan x)’ = \cfrac{1}{1 + x^2} (arctanx)=1+x21(16) ( arccot ⁡ x ) ’ = − 1 1 + x 2 (\operatorname{arccot} x)’ = - \cfrac{1}{1 + x^2} (arccotx)=1+x21

2、函数的和、差、积、商的求导法则

u = u ( x ) , v = v ( x ) u = u(x), v = v(x) u=u(x),v=v(x) 都可导,则

(1) ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)=u±v
(2) ( C u ) ′ = C u ′ ( C 是常数 ) (C u)' = C u' (C是常数) (Cu)=Cu(C是常数)
(3) ( u v ) ′ = u ′ v + u v ′ (u v)' = u' v + u v' (uv)=uv+uv
(4) ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) \left( \cfrac{u}{v} \right)' = \cfrac{u' v - u v'}{v^2} (v \neq 0) (vu)=v2uvuv(v=0)

3、反函数的求导法则

x = f ( y ) x = f(y) x=f(y) 在区间 I y I_y Iy 内单调、可导且 f ′ ( y ) ≠ 0 f' (y) \neq 0 f(y)=0 ,则它的反函数 y = f − 1 ( x ) y = f^{-1} (x) y=f1(x) I x = f ( I y ) I_x = f(I_y) Ix=f(Iy) 内也可导,且
[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y . [f^{-1}(x)]' = \cfrac{1}{f'(y)} \quad 或 \quad \cfrac{\mathrm d y}{\mathrm d x} = \cfrac{1}{\frac{\mathrm d x}{\mathrm d y}} . [f1(x)]=f(y)1dxdy=dydx1.

4、复合函数的求导法则

y = f ( u ) y = f(u) y=f(u) ,而 u = g ( x ) u = \mathrm g (x) u=g(x) f ( u ) f(u) f(u) g ( x ) \mathrm g (x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y = f[\mathrm g (x)] y=f[g(x)] 的导数为
d y d x = d y d u ⋅ d u d x 或 y ′ ( x ) = f ′ ( u ) g ′ ( x ) . \cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{\mathrm{d}y}{\mathrm{d}u} \cdot \cfrac{\mathrm{d}u}{\mathrm{d}x} \quad 或 \quad y'(x) = f'(u) \mathrm{g} '(x) . dxdy=dudydxduy(x)=f(u)g(x).

例 设 y = sin ⁡ n x ⋅ sin ⁡ n x y = \sin{nx} \cdot \sin^n x y=sinnxsinnx n n n 为常数),求 y ′ y' y .
解首先应用积的求导法则得
y ′ = ( sin ⁡ n x ) ′ ⋅ sin ⁡ n x + sin ⁡ n x ⋅ ( sin ⁡ n x ) y' = (\sin{nx})' \cdot \sin^n x + \sin{nx} \cdot (\sin^n x) y=(sinnx)sinnx+sinnx(sinnx)
在计算 ( sin ⁡ n x ) ′ (\sin{nx})' (sinnx) ( sin ⁡ n x ) ′ (\sin^n x)' (sinnx) 时,都要应用复合函数的求导法则,由此得
y ′ = n cos ⁡ n x ⋅ sin ⁡ n x + sin ⁡ n x ⋅ n sin ⁡ n − 1 x ⋅ cos ⁡ x = n sin ⁡ n − 1 x ( cos ⁡ n x ⋅ sin ⁡ x + sin ⁡ n x ⋅ cos ⁡ x ) = n sin ⁡ n − 1 x ⋅ sin ⁡ ( n + 1 ) x \begin{align*} y' &= n \cos{nx} \cdot \sin^n x + \sin{nx} \cdot n \sin^{n - 1} x \cdot \cos x \\ &= n \sin^{n - 1} x (\cos{nx} \cdot \sin x + \sin{nx} \cdot \cos x) \\ &= n \sin^{n - 1} x \cdot \sin{(n + 1) x} \end{align*} y=ncosnxsinnx+sinnxnsinn1xcosx=nsinn1x(cosnxsinx+sinnxcosx)=nsinn1xsin(n+1)x

原文链接:高等数学 2.2 函数的求导法则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值