一、无穷限反常积分的审敛法
定理1 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0.若函数
F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^x f(t) \mathrm{d}t F(x)=∫axf(t)dt
在 [ a , + ∞ ) [a, +\infty) [a,+∞) 上有上界,则反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 收敛。
定理2(比较审敛原理) 设函数 f ( x ) f(x) f(x), g ( x ) \mathrm{g}(x) g(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续。如果 0 ⩽ f ( x ) ⩽ g ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant f(x) \leqslant \mathrm{g}(x)(a \leqslant x < +\infty) 0⩽f(x)⩽g(x)(a⩽x<+∞) 并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x ∫a+∞g(x)dx 收敛,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 也收敛;如果 0 ⩽ g ( x ) ⩽ f ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant \mathrm{g}(x) \leqslant f(x)(a \leqslant x < +\infty) 0⩽g(x)⩽f(x)(a⩽x<+∞) ,并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x ∫a+∞g(x)dx 发散,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 也发散。
定理3(比较审敛法1) 设函数 f ( x