高等数学:第二章 导数与微分(2)函数的和、差、积、商求导法则

本文深入探讨了函数求导的四则运算法则,包括和、差、积、商的求导法则,并通过实例详细解析了如何运用这些法则简化导数的计算过程。文章还提供了基本导数公式及其证明,帮助读者掌握函数求导的基本技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§2.2  函数的和、差、积、商求导法则

如果只利用导数的定义来求函数的导数,实在不易。求函数导数是否有简便可行的方法呢?有的!导数在数学形式上只是一种特殊的函数极限,因此,我们可由函数极限的四则运算法则,导出函数求导的四则运算法则

一、函数求导的四则运算法则

在下面的讨论中,总假定:

函数在点处具有导数

【法则一】  

 证明:

 

 

【法则二】  

证明:,由导数的定义有

【推论】为任意常数,则

积的求导法则可方便地推广到任意有限个函数积的形式,例如

【法则三】 ,且,则

 

(3)、【一个常用推论】

     (此处的负号容易出错 )

(4)、不可将商的求导法则记成:“商的求导,楼上一撇,楼下一撇”

二、求导举例

【例1】求下列函数的导数或导数值

 

解:(1)

 

解: (2)

 

解: (3)

 

【例2】证明下列基本导数公式:

证明:

 (1)

(2)

 

(3)

 

(4)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值