一、隐函数求导
函数 y = f ( x ) y = f(x) y=f(x) 表示两个变量 y y y 与 x x x 之间的对应关系,这种对应关系可以用各种不同方式表达,例如 y = sin x y = \sin x y=sinx , y = ln x + 1 − x 2 y = \ln x + \sqrt{1 - x^2} y=lnx+1−x2 等。这种函数表达方式的特点是:等号左端是因变量的符号,而右端是含有自变量的式子,当自变量取定义域内任一值时,由这式子能确定对应的函数值。用这种方式表达的函数叫做显函数。有些函数的表达方式却不是这样,例如,方程
x + y 3 − 1 = 0 x + y^3 - 1 = 0 x+y3−1=0
表示一个函数,因为当变量 x x x 在 ( − ∞ , ∞ ) (- \infty, \infty) (−∞,∞) 内取值时,变量 y y y 有确定的值与之对应。例如,当 x = 0 x = 0 x=0 时, y = 1 y = 1 y=1 ;当 x = − 1 x = -1 x=−1 时, y = 2 3 y = \sqrt[3]{2} y=32 ,等等。这样的函数称为隐函数。
一般地,如果变量 x x x 和 y y y 满足一个方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 ,在一定条件下,当 x x x 取某区间内任一值时,相应地总有满足这一方程的唯一的 y y y 值存在,那么就说方程 F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0 在该区间内确定了一个隐函数。
把一个隐函数化成显函数,叫做隐函数的显化。例如从方程 x + y 3 − 1 = 0 x + y^3 - 1= 0 x+y3−1=0 解出 y = 1 − x 3 y = \sqrt[3]{1 - x} y=31−x ,就把隐函数化成了显函数。隐函数显化有时是困难的,甚至是不可能的。但在实际问题中,有时需要计算隐函数的导数,因此,我们希望有一种方法,不管隐函数能否显化,都能直接由方程算出它所确定的隐函数的导数。下面通过具体例子来说明这种方法。
例1 求由方程 e y + x y − e = 0 \mathrm{e}^y + x y - \mathrm{e} = 0 ey+xy−e=0 所确定的隐函数的导数 d y d x \cfrac{\mathrm{d}y}{\mathrm{d}x} dxdy .
解:我们把方程两端分别对 x x x 求导,注意 y = y ( x ) y = y(x) y=y(x) 。方程左端对 x x x 求导得
d d x ( e y + x y − e ) = e y d y d x + y + x d y d x , \cfrac{\mathrm{d}}{\mathrm{d}x} (\mathrm{e}^y + x y - \mathrm{e}) = \mathrm{e}^y \cfrac{\mathrm{d}y}{\mathrm{d}x} + y + x \cfrac{\mathrm{d}y}{\mathrm{d}x} , dxd(ey+xy−e)=eydxdy+y+xdxdy,
方程右端对 x x x 求导得
( 0 ) ′ = 0. (0)' = 0. (0)′=0.
由于等式两端对 x x x 的导数相等,所以
e y d y d x + y + x d y d x = 0 , \mathrm{e}^y \cfrac{\mathrm{d}y}{\mathrm{d}x} + y + x \cfrac{\mathrm{d}y}{\mathrm{d}x} = 0, eydxdy+y+xdxdy=0,
从而
d y d x = − y x + e y ( x + e y ≠ 0 ) \cfrac{\mathrm{d}y}{\mathrm{d}x} = - \cfrac{y}{x + \mathrm{e}^y} \quad (x + \mathrm{e}^y \neq 0) dxdy=−x+eyy(x+ey=0)
在这个结果中,分式中的 y = y ( x ) y = y(x) y=y(x) 是由方程 e y + x y − e = 0 \mathrm{e}^y + x y - \mathrm{e} = 0 ey+xy−e=0 所确定的隐函数。
例2 求由方程 y 5 + 2 y − x − 3 x 7 = 0 y^5 + 2y - x - 3 x^7 = 0 y5+2y−x−3x7=0 所确定的隐函数在 x = 0 x = 0 x=0 处的导数 d y d x ∣ x = 0 \left . \cfrac{\mathrm{d}y}{\mathrm{d}x} \right|_{x = 0} dxdy
x=0 .
解:把方程两端分别对 x x x 求导,由于方程两端的导数相等,所以
5 y 4 d y d x + 2 d y d x − 1 − 21 x 6 = 0. 5y^4 \cfrac{\mathrm{d}y}{\mathrm{d}x} + 2 \cfrac{\mathrm{d}y}{\mathrm{d}x} - 1 - 21 x^6 = 0 . 5y4dxdy+2dxdy−1−21x6=0.
由此得
d y d x = 1 + 21 x 6 5 y 4 + 2 . \cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{1 + 21 x^6}{5 y^4 + 2} . dxdy=5y4+21+21x6.
因为当 x = 0 x = 0 x=0 时,从原方程的 y = 0 y = 0 y=0 ,所以
d y d x ∣ x = 0 = 1 2 . \left . \cfrac{\mathrm{d}y}{\mathrm{d}x} \right|_{x = 0} = \cfrac{1}{2} . dxdy
x=0=21.
例3 求椭圆 x 2 16 + y 2 9 = 1 \cfrac{x^2}{16} + \cfrac{y^2}{9} = 1 16x2+9y2=1 在点 ( 2 , 3 2 3 ) \left( 2, \cfrac{3}{2} \sqrt 3 \right) (2,233) 处的切线方程。
解:由导数的几何意义可知,所求切线斜率为
k = y ′ ∣ x = 2 . k = \left . y' \right|_{x = 2} . k=y′∣x=2.
椭圆方程的两端分别对 x x x 求导,有
x 8 + 2 9 y ⋅ d y d x = 0. \cfrac{x}{8} + \cfrac{2}{9} y \cdot \cfrac{\mathrm{d}y}{\mathrm{d}x} = 0 . 8x+92y⋅dxdy=0.
从而
d y d x = − 9 x 16 y . \cfrac{\mathrm{d}y}{\mathrm{d}x} = - \cfrac{9 x}{16 y} . dxdy=−16y9x.
当 x = 2 x = 2 x=2 时, y = 3 2 3 y = \cfrac{3}{2} \sqrt 3 y=233