8.1 向量及其线性运算
文章目录
一、向量的概念
客观世界中,有这样一类量,它们既有大小,又有方向,这一类量叫做 向量(或 矢量)。
在数学上,常用一条有方向的线段,即有向线段来表示向量。有向线段的长度表示向量的大小,有向线段的方向表示向量的方向。以 A A A 为起点、 B B B 为终点的有向线段所表示的向量记作 A B → \overrightarrow{AB} AB 。有时也用一个黑体字母(书写时,在字母上面加箭头)来表示向量,例如 a , r , v , F \boldsymbol{a} ,\boldsymbol{r}, \boldsymbol{v}, \boldsymbol{F} a,r,v,F 或 a ⃗ , r ⃗ , v ⃗ , F ⃗ \vec{a}, \vec{r}, \vec{v}, \vec{F} a,r,v,F 等。
由于一切向量的共性是它们都有大小和方向,因此在数学上只研究与起点无关的向量,并称这种向量为 自由向量 (以后简称 向量),即只考虑大小和方向,而不论它的起点在什么地方。当遇到与起点有关的的向量时,可在一般原则下作特别处理。
由于是自由向量,如果两个向量 a \boldsymbol{a} a 和 b \boldsymbol{b} b 的大小相等,且方向相同,就说向量 a \boldsymbol{a} a 和 b \boldsymbol{b} b 是相等的,记作 a = b \boldsymbol{a} = \boldsymbol{b} a=b 。这就是说,经过平行移动后能完全重合的向量是相等的。
向量的大小叫做向量的模。向量 A B → , a \overrightarrow{AB}, \boldsymbol{a} AB,a 和 a ⃗ \vec{a} a 的模依次记作 ∣ A B → ∣ , ∣ a ∣ |\overrightarrow{AB}| ,|\boldsymbol{a}| ∣AB∣,∣a∣ 和 ∣ a ⃗ ∣ |\vec{a}| ∣a∣ 。模等于1的向量叫做单位向量。模等于0的向量叫做零向量,记作 0 \boldsymbol{0} 0 或 0 ⃗ \vec{0} 0 。零向量的起点和终点重合,它的方向可以看做是任意的。
设有两个非零向量 a , b \boldsymbol{a}, \boldsymbol{b} a,b ,任取空间一点 O O O ,作 O A → = a , O B → = b \overrightarrow{OA} = \boldsymbol{a}, \overrightarrow{OB} = \boldsymbol{b} OA=a,OB=b ,规定不超过 π \pi π 的 ∠ A O B ∠AOB ∠AOB (设 φ = ∠ A O B , 0 ⩽ φ ⩽ π \varphi = ∠AOB, 0 \leqslant \varphi \leqslant \pi φ=∠AOB,0⩽φ⩽π)称为向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 的夹角,记作 ( a , b ^ ) (\widehat{\boldsymbol{a}, \boldsymbol{b}}) (a,b ) 或 ( b , a ^ ) (\widehat{\boldsymbol{b}, \boldsymbol{a}}) (b,a ),即 ( a , b ^ ) = φ (\widehat{\boldsymbol{a}, \boldsymbol{b}}) = \varphi (a,b )=φ 。如果向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 中有一个是零向量,规定它们的夹角可以在 0 到 π \pi π 之间取任意值。
如果 ( a , b ^ ) = 0 或 π (\widehat{\boldsymbol{a}, \boldsymbol{b}}) = 0 或 \pi (a,b )=0或π ,就称向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 平行,记作 a ∥ b \boldsymbol{a} \parallel \boldsymbol{b} a∥b 。如果 ( a , b ^ ) = π 2 (\widehat{\boldsymbol{a}, \boldsymbol{b}}) = \cfrac{\pi}{2} (a,b )=2π ,就称向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 垂直,记作 a ⊥ b \boldsymbol{a} \perp \boldsymbol{b} a⊥b 。由于零向量与另一向量夹角可以在 0 到 π \pi π 之间取任意值,因此可以认为零向量与任何向量都平行,也可以认为零向量与任何向量都垂直。
当两个平行向量的起点放在同一点时,它们的终点和公共起点应在一条直线上。因此,两向量平行,又称两向量共线。
设有 k ( k ⩾ 3 ) k (k \geqslant 3) k(k⩾3) 个向量,当把它们的起点放在同一点时,如果 k k k 个终点和公共起点在一个平面上,就称这 k k k 个向量共面。
向量的线性运算
1.向量的加减法
向量的加法运算规定如下:
设有两个向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b ,任取一点 A A A ,作 A B → = a \overrightarrow{AB} = \boldsymbol{a} AB=a ,再以 B B B 为起点,作 B C → = b \overrightarrow{BC} = \boldsymbol{b} BC=b ,连接 A C AC AC ,那么向量 A C → = c \overrightarrow{AC} = \boldsymbol{c} AC=c 称为向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 的和,记作 a + b \boldsymbol{a} + \boldsymbol{b} a+b ,即
c = a + b \boldsymbol{c} = \boldsymbol{a} + \boldsymbol{b} c=a+b
上述作出两向量之和的方法叫做向量相加的三角形法则。
力学上有求合力的平行四边形法则,仿此,我们也有向量的平行四边形法则。这就是:当向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 不平行时,作 A B → = a , A D → = b \overrightarrow{AB} = \boldsymbol{a}, \overrightarrow{AD} = \boldsymbol{b} AB=a,AD=b,以 A B , A D AB, AD AB,AD 为边作一平行四边形 A B C D ABCD ABCD ,连接对角线 A C AC AC ,显然向量 A C → \overrightarrow{AC} AC 即等于向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 的和 a + b \boldsymbol{a} + \boldsymbol{b} a+b。
向量的加法符合下列运算规律:
交换律 a + b = b + a \boldsymbol{a} + \boldsymbol{b} = \boldsymbol{b} + \boldsymbol{a} a+b=b+a ;
结合律 ( a + b ) + c = a + ( b + c ) (\boldsymbol{a} + \boldsymbol{b}) + \boldsymbol{c} = \boldsymbol{a} + (\boldsymbol{b} + \boldsymbol{c}) (a+b)+c=a+(b+c) .
设 a \boldsymbol{a} a 为一向量,与 a \boldsymbol{a} a 的模相同而方向相反的向量叫做 a \boldsymbol{a} a 的负向量,记作 − a - \boldsymbol{a} −a。由此,规定两个向量 a \boldsymbol{a} a 与 b \boldsymbol{b} b 的差
b − a = b + ( − a ) \boldsymbol{b} - \boldsymbol{a} = \boldsymbol{b} + (- \boldsymbol{a}) b−a=b+(−a)
即把向量 − a - \boldsymbol{a} −a 加到向量 b \boldsymbol{b} b 上,便得 b