文章目录
一、 y ( n ) = f ( x ) y^{(n)} = f(x) y(n)=f(x) 型的微分方程
微分方程
y ( n ) = f ( x ) (1) y^{(n)} = f(x) \tag{1} y(n)=f(x)(1)
的右端仅含有自变量 x x x 。容易看出,只要把 y ( n − 1 ) y^{(n - 1)} y(n−1) 作为新的未知函数,那么 ( 1 ) (1) (1) 式就是新未知函数的一阶微分方程。两边积分,就得到一个 n − 1 n - 1 n−1 阶的微分方程
y ( n − 1 ) = ∫ f ( x ) d x + C 1 . y^{(n - 1)} = \int f(x) \mathrm{d}x + C_1. y(n−1)=∫f(x)dx+C1.
同理可得
y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 . y^{(n - 2)} = \int \left[ \int f(x) \mathrm{d}x + C_1 \right] \mathrm{d}x + C_2. y(n−2)=∫[∫f(x)dx+C1]dx+C2.
依此法继续进行,接连积分 n n n 次,便得方程 ( 1 ) (1) (1) 的含有 n n n 个任意常数的通解。
例1 求微分方程 y ′ ′ ′ = e 2 x − cos x y''' = \mathrm{e}^{2x} - \cos x y′′′=e2x−cosx 的通解。
解:对所给方程接连积分三次,得
y ′ ′ = 1 2 e 2 x − sin x + C , y ′ = 1 4 2 2 x + cos x + C x + C 2 , y = 1 8 e 2 x + sin x + C 1 x 2 + C 2 x + C 3 ( C 1 = C 2 ) \begin{align*} y'' &= \cfrac{1}{2} \mathrm{e}^{2x} - \sin x + C, \\ y' &= \cfrac{1}{4} \mathrm{2}^{2x} + \cos x + Cx + C_2, \\ y &= \cfrac{1}{8} \mathrm{e}^{2x} + \sin x + C_1 x^2 + C_2 x + C_3 \quad \left(C_1 = \cfrac{C}{2} \right) \end{align*} y′′y′y=21e2x−sinx+C,=4122x+cosx+Cx+C2,=81e2x