欧拉函数:φ(n)表示从1~n-1中有多少个数与n互素, φ(1) = 1。
互素的意思即为两个数只有公因数1。
我们首先应该要知道欧拉函数的通项公式:φ(n)=n*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)……(1-1/pn),其中pi为n的质因数
下面介绍三种方法求欧拉函数
方法1:求单个数的欧拉函数
int euler(int n)
{
int ans=n;
for(int i=2;i*i<=n;i++){
if(n%i==0){
ans-=ans/i; //这里是把n乘进去后进行计算,即n=n-n/pi
while(n%i==0){
n/=i;
}//使求得的下一个i为n的质因数
}
}
if(n>1)ans-=ans/n;最后可能还剩下一个质因数没有除
return ans;
}
但是我们一般做的题当然不会这么简单啊~~来点稍微难一点点的。。。
如果我们要求的数比较多,如果一个一个求那么很容易就超时,所以我们自然而然就想到——打表。
方法2: 打表求欧拉函数
void euler()
{
E[1]=1;
for(int i=2;i<maxn;i++)
E[i]=i; //全部初始化为i
for(int i=2;i<maxn;i++){
if(E[i]==i)//若此数还未被处理,即为质因数
for(int j=i;j<maxn;j+=i){
E[j]=E[j]/i*(i-1);//只要是i的倍数,都包含了质因数i,所以直接上公式
}
}
void euler()
{
for(int i=2;i<maxn;i++){
if(!E[i])
for(int j=i;j<maxn;j+=i){
if(!E[j])E[j]=j;
E[j]=E[j]/i*(i-1);
}
}
}
两种打表方式大同小异
方法3: 欧拉筛素数同时求欧拉函数
void get_phi()
{
int i, j, k=1;
for(i = 2; i <= maxn; i++)
{
if(!flag[i])
{
prime[k++] = i;
phi[i] = i-1;
}
for(j = 1; j<=k && i*prime[j]<=maxn; j++)
{
flag[ i*prime[j] ] = 1;
if(i%prime[j] == 0)
{
phi[ i*prime[j] ] = phi[i] * prime[j];//若prime[j]是i的质因子,则根据计算公式,i已经包括i*prime[j]的所有质因子
break;//经典欧拉筛的核心语句,这样能保证每个数只会被自己最小的因子筛掉一次
}
else
{
phi[ i*prime[j] ] = phi[i]*(prime[j]-1);
}
}
}
}
欧拉函数的性质:
①N>1,不大于N且和N互素的所有正整数的和是 1/2 *N *eular(N)。 推荐题目:HDOJ 3501 题解:添加链接描述
②若(N%a= =0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;
③若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);