欧拉函数

欧拉函数:φ(n)表示从1~n-1中有多少个数与n互素, φ(1) = 1。
互素的意思即为两个数只有公因数1。
我们首先应该要知道欧拉函数的通项公式:φ(n)=n*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)……(1-1/pn),其中pi为n的质因数
下面介绍三种方法求欧拉函数
方法1:求单个数的欧拉函数

int euler(int n)  
{  
    int ans=n;  
    for(int i=2;i*i<=n;i++){  
        if(n%i==0){  
            ans-=ans/i;  //这里是把n乘进去后进行计算,即n=n-n/pi
            while(n%i==0){
                n/=i;  
            }//使求得的下一个i为n的质因数
        }  
    }  
    if(n>1)ans-=ans/n;最后可能还剩下一个质因数没有除
    return ans;  
}

但是我们一般做的题当然不会这么简单啊~~来点稍微难一点点的。。。
如果我们要求的数比较多,如果一个一个求那么很容易就超时,所以我们自然而然就想到——打表。
方法2: 打表求欧拉函数


void euler()  
{  
    E[1]=1;  
    for(int i=2;i<maxn;i++)  
        E[i]=i; //全部初始化为i
    for(int i=2;i<maxn;i++){  
        if(E[i]==i)//若此数还未被处理,即为质因数
        for(int j=i;j<maxn;j+=i){  
            E[j]=E[j]/i*(i-1);//只要是i的倍数,都包含了质因数i,所以直接上公式  
        }  
    }  

void euler()  
{  
    for(int i=2;i<maxn;i++){  
        if(!E[i])  
        for(int j=i;j<maxn;j+=i){  
            if(!E[j])E[j]=j;  
            E[j]=E[j]/i*(i-1);  
        }  
    }  
}

两种打表方式大同小异
方法3: 欧拉筛素数同时求欧拉函数

void get_phi()  
{  
    int i, j, k=1; 
    for(i = 2; i <= maxn; i++)  
    {  
        if(!flag[i])  
        {  
            prime[k++] = i;  
            phi[i] = i-1;  
        }  
        for(j = 1; j<=k && i*prime[j]<=maxn; j++)  
        {  
            flag[ i*prime[j] ] = 1;  
            if(i%prime[j] == 0)  
            {  
                phi[ i*prime[j] ] = phi[i] * prime[j];//若prime[j]是i的质因子,则根据计算公式,i已经包括i*prime[j]的所有质因子   
                break;//经典欧拉筛的核心语句,这样能保证每个数只会被自己最小的因子筛掉一次  
            }  
            else  
            {  
                phi[ i*prime[j] ] = phi[i]*(prime[j]-1;
            }  
        }  
    }  
} 

欧拉函数的性质:

①N>1,不大于N且和N互素的所有正整数的和是 1/2 *N *eular(N)。 推荐题目:HDOJ 3501 题解:添加链接描述

②若(N%a= =0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;

③若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值