逆元

1. 乘法逆元
如果a·x≡1(mod p)且gcd(a,p)=1(即a,p互质),那么x为模p意义下的乘法逆元。
一个数有逆元的充分必要条件是gcd(a,p)=1,此时逆元唯一存在。
2.拓展欧几里得求逆元
a·x≡1(mod p)
可以转化成a·x+p·y=1
求逆元即求x

typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y) //扩展欧几里得算法
{
	if (b == 0)
	{
		x = 1, y = 0;
		return a;
	}
	ll t = exgcd(b, a % b, y, x);//注意是y,x
	y = y - a / b * x;
	return t;
}
ll Inv(int a, int mod) //求a在mod下的逆元,不存在逆元返回-1
{
	ll x, y;
	ll d = exgcd(a, mod, x, y);
	return d == 1 ? (x%mod+ mod) % mod : -1; //x可能是负数,转化成正数
}

3.费马小定理/欧拉定理
模为素数时
费马小定理:
如果p是一个质数,而整数a不是p的倍数,则有a^p-1≡1(mod p)。
可以得到a*a^p-2≡1(mod p)。

很明显a^p-2就是a在模p意义下的逆元。
模不是素数时
欧拉定理:
若a、p为正整数且a、p互质,则有a^φ( p)≡1(mod p)。
可以得到a*a^(φ( p)-1)≡1(mod p)。

那么a^(φ( p)-1)就是a在模p意义下的逆元。

// 快速幂
ll qpow(ll a, ll b)
{
	ll res = 1;
	while (b)
	{
		if (b & 1)
			res = res * a % mod;
		a = a * a % mod;
		b >>= 1;
	}
	return res % mod;
}
// 费马小定理 —— a在模p意义下的逆元
ll Inv(ll a, ll p) { return qpow(a, p - 2); }

费马小定理时间复杂度:O (logmod),mod为素数时常用,好写一些。
欧拉定理需要求欧拉函数值 φ ( p ) ,当p为素数时,欧拉定理就变成了费马小定理。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值