【小知识酷】《Matlab》考点精简

在线编译器 https://matlab.mathworks.com/?elqsid=umic49viv8wu5r6fckew

第1章 matlab基础知识

第1节 输出函数

1. 使用disp函数

disp函数可用于输出变量的值或者字符串。

% 输出字符串
disp('Hello, MATLAB!'); %显示Hello, MATLAB!

% 输出变量
x = 10;
disp(x); %显示10

% 输出数组元素
A = [10, 20, 30, 40, 50];
disp(A); %显示10    20    30    40    50

2. 使用fprintf函数

fprintf函数能按照指定的格式输出数据,这和C语言里的printf函数类似。

% 输出格式化的字符串和变量
x = 3.14159;
fprintf('The value of x is %.2f\n', x); %保留2位小数,并四舍五入,显示3.14

3. 使用sprintf函数

sprintf函数和fprintf函数类似,不过它是把格式化后的字符串返回,而非直接输出。

% 将格式化后的字符串赋值给变量
x = 2.71858;
str = sprintf('The value of x is %.3f', x); 
disp(str); %保留3位小数,并四舍五入,显示2.719

4. 直接在命令窗口输入变量名

在命令窗口直接输入变量名,回车后就能显示变量的值。

y = [1, 2, 3, 4, 5];
y

第2节 input输入函数

在MATLAB中,input函数用于从用户处获取输入,它有多种使用方式,下面为你详细介绍其语法和示例。

基本语法

1. x = input(prompt)

这种语法会在命令窗口显示prompt提示信息,然后等待用户输入内容,最后将用户输入的内容作为结果返回给变量x。如果用户输入的是有效的MATLAB表达式,MATLAB会计算该表达式的值并返回;如果输入的是字符串,需要用单引号将其括起来。

x = input('请输入一个数字: ');
disp(['你输入的数字是: ', num2str(x)]);

在这个示例里,运行代码后命令窗口会显示请输入一个数字: ,等待用户输入。若用户输入5,程序会把这个数字赋值给变量x,并在后续显示出你输入的数字是: 5

2. x = input(prompt,'s')

在这种形式中,'s'参数表明将用户输入的内容按字符串形式处理,无论用户输入什么,都会直接作为字符串返回给变量x,而不会对其进行表达式计算。

name = input('请输入你的名字: ','s');
disp(['你输入的名字是: ', name]);

运行此代码,命令窗口会显示请输入你的名字: ,当用户输入张三时,程序会把张三作为字符串赋值给变量name,并显示你输入的名字是: 张三

输入验证和错误处理

在实际使用中,为保证输入的有效性,可能需要对用户输入进行验证和错误处理。以下是一个简单的示例,确保用户输入的是正数:

while true
    num = input('请输入一个正数: ');
    if num > 0
        disp(['你输入的正数是: ', num2str(num)]);
        break;
    else
        disp('输入无效,请输入一个正数。');
    end
end

这个代码会持续提示用户输入正数,若用户输入的不是正数,会显示错误提示并要求重新输入,直到输入有效的正数为止。

综上所述,input函数是MATLAB中获取用户输入的重要工具,可根据具体需求选择合适的语法形式。

第3节 算术运算

在MATLAB里,*.*/./是用途不同的运算符,下面为你详细讲解它们的区别以及MATLAB里的其他常见运算符。

*.*的区别

  • *(矩阵乘法运算符):用于执行矩阵乘法,需遵循矩阵乘法规则,即第一个矩阵的列数要和第二个矩阵的行数相等。
  • .*(点乘运算符):用于数组对应元素相乘,要求参与运算的两个数组大小相同,会把两个数组对应位置的元素相乘。

以下是示例代码:

% 定义矩阵 A 和 B
A = [1, 2; 3, 4];
B = [5, 6; 7, 8];

% 矩阵乘法
C = A * B;
disp('矩阵乘法 A * B 的结果:');
disp(C);

% 数组点乘
D = A .* B;
disp('数组点乘 A .* B 的结果:');
disp(D);

输出结果:

矩阵乘法 A * B 的结果:
    19    22
    43    50
数组点乘 A .* B 的结果:
     5    12
    21    32

/./的区别

  • /(矩阵右除运算符):用于求解线性方程组 X * B = A 的解X,相当于 X = A / B = A * inv(B),不过MATLAB会采用更高效的算法避免直接求逆。
  • ./(点除运算符):用于数组对应元素相除,要求参与运算的两个数组大小相同,会用第一个数组的每个元素除以第二个数组对应位置的元素。

以下是示例代码:

% 定义矩阵 A 和 B
A = [1, 2; 3, 4];
B = [5, 6; 7, 8];

% 矩阵右除
C = A / B;
disp('矩阵右除 A / B 的结果:');
disp(C);

% 数组点除
D = A ./ B;
disp('数组点除 A ./ B 的结果:');
disp(D);

输出结果:

矩阵右除 A / B 的结果:
   -3.0000   -2.0000
    4.0000    3.0000
数组点除 A ./ B 的结果:
    0.2000    0.3333
    0.4286    0.5000

MATLAB中的其他常见运算符

算术运算符
  • +:用于标量、数组和矩阵的加法运算。
  • -:用于标量、数组和矩阵的减法运算。
  • ^:矩阵幂运算,用于计算矩阵的幂。
  • .^:点幂运算符,用于计算数组每个元素的幂。
关系运算符
  • ==:判断是否相等,返回逻辑数组。
  • ~=:判断是否不相等,返回逻辑数组。
  • >:判断是否大于,返回逻辑数组。
  • <:判断是否小于,返回逻辑数组。
  • >=:判断是否大于等于,返回逻辑数组。
  • <=:判断是否小于等于,返回逻辑数组。
逻辑运算符
  • &:逻辑与运算,对两个逻辑数组或标量逐元素进行逻辑与操作。
  • |:逻辑或运算,对两个逻辑数组或标量逐元素进行逻辑或操作。
  • ~:逻辑非运算,对逻辑数组或标量逐元素进行逻辑非操作。
  • &&:短路逻辑与,用于标量逻辑与运算,若第一个操作数为false,则不计算第二个操作数。
  • ||:短路逻辑或,用于标量逻辑或运算,若第一个操作数为true,则不计算第二个操作数。
其他运算符
  • ::冒号运算符,用于创建向量、指定索引范围等。
  • ':矩阵转置运算符,用于求矩阵的转置。
  • .:结构体成员访问运算符,用于访问结构体的成员。

第5节 常用函数

fix、power、abs

第2章 matlab程序设计

第1节 if判断语句

在MATLAB里,if语句用于依据条件判断来决定是否执行特定的代码块。它有多种形式,下面为你详细介绍。

1. 基本的if语句

这种形式只有一个条件判断,当条件为真时,执行对应的代码块。

x = 10;
if x > 5
    disp('x 大于 5');
end

在这个例子里,由于x的值是10,大于5,所以条件为真,会执行disp('x 大于 5');语句。

2. if - else语句

当条件为真时,执行if后面的代码块;当条件为假时,执行else后面的代码块。

x = 3;
if x > 5
    disp('x 大于 5');
else
    disp('x 小于或等于 5');
end

这里x的值是3,不大于5,条件为假,因此会执行disp('x 小于或等于 5');语句。

3. if - elseif - else语句

可以使用elseif来添加更多的条件判断,当if的条件为假时,会依次判断elseif的条件,若都不满足,则执行else后面的代码块。

x = 0;
if x > 0
    disp('x 是正数');
elseif x < 0
    disp('x 是负数');
else
    disp('x 是零');
end

此例中x的值为0,不满足x > 0x < 0的条件,所以会执行disp('x 是零');语句。

4. 嵌套if语句

if语句的代码块中还可以再嵌套if语句,以实现更复杂的条件判断。

x = 10;
y = 5;
if x > 5
    if y > 3
        disp('x 大于 5 且 y 大于 3');
    end
end

在这个嵌套if语句里,首先判断x > 5,条件为真,接着进入内层if语句,判断y > 3,条件也为真,所以会执行disp('x 大于 5 且 y 大于 3');语句。

总结来说,if语句在MATLAB里是非常实用的条件控制结构,能依据不同的条件来执行不同的代码逻辑。

【例题】计算分段函数P46

x=input('请输入一个数:');
if x<0 
    y=abs(x);
elseif x<10
    y=sin(x)./(x+1);
elseif x<20
    y=pow(x,3);
else 
    y=(3+2*x).*log(x);
end
disp(y);

第3节 不同类型的比较操作

在MATLAB中,==~=><>=<= 分别用于不同类型的比较操作,下面为你详细介绍它们的语法和使用示例:

1. ==(相等比较)

== 用于比较两个值或数组的对应元素是否相等,返回一个逻辑数组(若输入为数组)或一个逻辑标量(若输入为标量),相等的位置为 true(即 1),不相等的位置为 false(即 0)。

% 标量比较
a = 5;
b = 5;
result1 = a == b;
disp(result1);

% 数组比较
A = [1, 2, 3];
B = [1, 4, 3];
result2 = A == B;
disp(result2);

2. ~=(不等于比较)

~= 用于比较两个值或数组的对应元素是否不相等,同样返回一个逻辑数组或逻辑标量,不相等的位置为 true,相等的位置为 false

% 标量比较
a = 5;
b = 6;
result3 = a ~= b;
disp(result3);

% 数组比较
A = [1, 2, 3];
B = [1, 4, 3];
result4 = A ~= B;
disp(result4);

3. >=(大于等于比较)

>= 用于比较两个值或数组的对应元素,判断左边的元素是否大于或等于右边的元素,返回的逻辑数组或逻辑标量中,满足条件的位置为 true,不满足条件的位置为 false

% 标量比较
a = 5;
b = 3;
result5 = a >= b;
disp(result5);

% 数组比较
A = [1, 2, 3];
B = [1, 4, 3];
result6 = A >= B;
disp(result6);

这些比较运算符在MATLAB的条件判断、数组筛选等操作中非常常用。例如,可以使用它们结合 if 语句来实现条件控制,或者结合逻辑索引来筛选数组中的元素。

第4节 switch语句

在MATLAB中,switch语句是一种条件控制结构,用于根据表达式的值来选择执行不同的代码块,它可以替代多个嵌套的if-elseif-else语句,使代码更加简洁易读。以下是switch语句的详细语法和使用示例。

基本语法

switch expression
    case value1
        % 当 expression 的值等于 value1 时执行的代码
        statements1
    case value2
        % 当 expression 的值等于 value2 时执行的代码
        statements2
    ...
    case valueN
        % 当 expression 的值等于 valueN 时执行的代码
        statementsN
    otherwise
        % 当 expression 的值不等于任何一个 case 值时执行的代码
        statements_otherwise
end
  • expression:是一个表达式,其值将与各个case后面的值进行比较。
  • case valuevalue可以是标量、向量或字符串,当expression的值与某个case后面的值相等时,就会执行该case下的代码块。
  • otherwise:是可选的,当expression的值不等于任何一个case后面的值时,会执行otherwise下的代码块。

使用示例

示例1:根据数字选择执行不同的操作
x = 2;
switch x
    case 1
        disp('x 的值是 1');
    case 2
        disp('x 的值是 2');
    case 3
        disp('x 的值是 3');
    otherwise
        disp('x 的值不是 1、2 或 3');
end

在这个例子中,x的值为2,所以会执行case 2下的代码块,输出x 的值是 2

示例2:使用向量作为case
x = [1, 2];
y = [1, 2];
switch isequal(x, y)
    case true
        disp('x 和 y 相等');
    case false
        disp('x 和 y 不相等');
end

这里使用isequal函数比较xy是否相等,返回一个布尔值。根据这个布尔值,选择执行相应的代码块。

示例3:处理多个值匹配的情况
x = 3;
switch x
    case {1, 2}
        disp('x 的值是 1 或 2');
    case {3, 4}
        disp('x 的值是 3 或 4');
    otherwise
        disp('x 的值不是 1、2、3 或 4');
end

在这个例子中,x的值为3,所以会执行case {3, 4}下的代码块,输出x 的值是 3 或 4

注意事项

  • switch语句中的比较是严格相等的比较,即值和类型都要相同。
  • 一旦某个case条件满足,执行完该case下的代码块后,会跳出switch语句,不会继续检查后面的case条件。
  • otherwise分支可以省略,如果省略且没有匹配的case条件,则不会执行任何代码。

for函数的使用

在MATLAB里,for循环是用来重复执行特定代码块的控制结构,可按照指定的次数或者遍历数组元素来执行操作。下面详细介绍for循环的常见使用方式。

1. 基于数值范围的for循环

借助冒号运算符来指定循环变量的取值范围,格式为for 循环变量 = 起始值:步长:终止值,若不指定步长,默认步长为1。

% 步长为1的情况
for i = 1:5
    fprintf('%d ',i);
end
fprintf("\n") %换行
% 指定步长为2的情况
for j = 1:2:10
    fprintf("%d ",j);
end

%输出如下:
1 2 3 4 5 
1 3 5 7 9

在第一个例子中,循环变量i从1开始,每次增加1,直到达到5,循环体中使用disp函数输出i的值。

第二个例子里,循环变量j从1开始,步长为2,直到达到10。

2. 使用end关键字结束循环

在MATLAB里,for循环必须以end关键字结尾,以此来标识循环体的结束。若缺少end,会导致语法错误。

总结而言,for循环在MATLAB中是一种很有用的控制结构,能够根据需求实现不同的循环逻辑。

3. 遍历数组元素的for循环

for循环能直接遍历数组的每个元素。

A = [10, 20, 30, 40, 50];
for element = A
    disp(element);
end

这里的A是一个数组,循环变量element会依次取数组A中的每个元素,并将其输出。

4. 嵌套for循环

可以在一个for循环内部嵌套另一个for循环,用于处理二维数组或者实现更复杂的逻辑。

for i = 1:3
    for j = 1:2
        result = i * j;
        fprintf('i = %d, j = %d, i * j = %d\n', i, j, result);
    end
end

在这个嵌套for循环中,外层循环控制i的值从1到3,内层循环控制j的值从1到2,每次循环都会计算ij的乘积并输出。

【例题1】对于三位数而言,若一个三位数的百位、十位、个位数字的立方和等于该数本身,那它就是水仙花数。输出100~999之间的水仙花数

num=[];
for i=100:999
    g=mod(i,10);
    s=mod(fix(i/10),10);
    b=fix(i/100);
    sum = power(g,3)+power(s,3)+power(b,3);
    if sum==i
        num = [num,sum]; %存入结果
    end
end
disp(num); %输出153   370   371   407

【例题2】若一个数等于它的各个真因子之和,则称该数为完数,如6=1+2+3,所以6是完数。求[1,100]之间的全部完数。

for num=1:100 %1~100之间
  s=0;
  for i=1:num 
    if num%i==0
      s = s + i; %将因子数相加
      if num==s
        fprintf('%d ',s);
      end
    end
  end
end

breakcontinue

在MATLAB中,breakcontinue都是用于控制循环流程的关键字,它们在循环结构(如for循环和while循环)中发挥着不同的作用,下面为你详细介绍二者的区别。

1. break语句

break语句的主要作用是立即终止当前所在的循环,无论循环条件是否满足,程序都会跳出该循环,继续执行循环之后的代码。

示例代码
for i = 1:10
    if i == 5
        break;
    end
    disp(i);
end
disp('循环已终止');
代码解释

在这个for循环中,当变量i的值等于5时,break语句会被执行,循环会立即终止,不再执行后续的循环迭代。所以,代码只会输出1到4的数字,然后输出循环已终止

2. continue语句

continue语句用于跳过当前循环迭代中continue语句之后的代码,直接进入下一次循环迭代。也就是说,它会忽略本次循环剩余的代码,但是循环会继续执行,直到循环条件不再满足。

示例代码
for i = 1:10
    if i == 5
        continue;
    end
    disp(i);
end
disp('循环已结束');
代码解释

在这个for循环中,当变量i的值等于5时,continue语句会被执行,disp(i);语句会被跳过,直接进入下一次循环迭代。所以,代码会输出除5之外的1到10的数字,最后输出循环已结束

总结

  • break:终止整个循环,跳出循环体,不再执行后续的循环迭代。
  • continue:跳过当前循环迭代中continue语句之后的代码,直接进入下一次循环迭代,循环会继续执行。

在实际编程中,你可以根据具体的需求选择使用breakcontinue来控制循环的执行流程。

章节练习

第8章 符号计算

factor因式分解

在MATLAB中,factor 函数主要用于对整数进行分解质因数操作,下面为你详细介绍其语法及使用示例。

基本语法

F = factor(X)
  • 输入参数
    • X:可以是一个标量整数、整数向量或者整数矩阵。当 X 是向量或矩阵时,factor 函数会对其中的每个元素分别进行质因数分解。
  • 输出参数
    • F:如果 X 是标量整数,F 是一个包含 X 的质因数的向量,这些质因数按升序排列。如果 X 是向量或矩阵,F 是一个元胞数组,其中每个元胞对应 X 中相应位置元素的质因数分解结果。

使用示例

对标量整数进行质因数分解
X = 24;
F = factor(X);
disp(F);

在这个例子中,factor 函数会将整数 24 分解为质因数,结果存储在向量 F 中。运行代码后,你会看到输出为 2 2 2 3,这表明 24 = 2 × 2 × 2 × 3

对整数向量进行质因数分解
X = [12, 15];
F = factor(X);
disp(F);

当输入是一个向量时,factor 函数会对向量中的每个元素分别进行质因数分解,并将结果存储在元胞数组 F 中。对于这个例子,F{1}12 的质因数分解结果 2 2 3F{2}15 的质因数分解结果 3 5

对整数矩阵进行质因数分解
X = [16, 18; 20, 22];
F = factor(X);
disp(F);

这里输入是一个矩阵,factor 函数会对矩阵中的每个元素进行质因数分解,结果存储在元胞数组 F 中。F 中的每个元胞对应矩阵 X 中相应位置元素的质因数分解结果。

需要注意的是,factor 函数的输入必须是整数。如果输入为非整数,MATLAB 会给出错误提示。

% 1、定义xyz
syms x y z
% 2、factor(公式)
f1 = factor(x^9 - 1);
disp('1) 分解结果为:');
disp(f1);

limit求极限

在MATLAB里,limit函数主要用于计算符号表达式的极限。下面为你详细介绍它的语法和使用示例。

基本语法

1. limit(f, x, a)

此语法用于计算符号表达式f在变量x趋近于a时的极限。

syms x;
f = (x^2 - 1)/(x - 1);
a = 1;
L = limit(f, x, a);
disp(L);

在这个例子中,我们先定义了符号变量x,接着定义了符号表达式f,最后计算当x趋近于1时f的极限。运行代码后,会输出极限值2。

2. limit(f, a)

若符号表达式f中只有一个符号变量,那么可以省略变量名,直接使用此语法计算该符号表达式在该变量趋近于a时的极限。

syms t;
f = sin(t)/t;
a = 0;
L = limit(f, a);
disp(L);

这里定义了符号变量t和符号表达式f,然后计算当t趋近于0时f的极限,输出结果为1。

3. limit(f, x, a, 'right')

此语法用于计算符号表达式f在变量x从右侧趋近于a时的极限(右极限)。

syms x;
f = 1/x;
a = 0;
L = limit(f, x, a, 'right');
disp(L);

运行该代码后,会得到fx从右侧趋近于0时的极限,结果为Inf(正无穷)。

4. limit(f, x, a, 'left')

此语法用于计算符号表达式f在变量x从左侧趋近于a时的极限(左极限)。

syms x;
f = 1/x;
a = 0;
L = limit(f, x, a, 'left');
disp(L);

运行代码后,会得到fx从左侧趋近于0时的极限,结果为-Inf(负无穷)。

注意事项

  • 要使用limit函数,需要先使用syms函数定义符号变量。
  • 当极限不存在时,limit函数可能返回NaN(非数字)或者给出一个未定义的结果。
syms x
% (1)lim (x→4) (x^2 -6x +8)/(x^2 -5x +4)
limit1 = limit((x^2 - 6*x + 8)/(x^2 -5*x + 4), x, 4);
disp('(1)极限为:');
disp(limit1);
% (2)lim (x→0⁻) |x|/x
limit2 = limit(abs(x)/x, x, 0, 'left');
disp('(2)极限为:');
disp(limit2);

diff求导

在MATLAB中,diff函数主要用于计算数值差分,而对于符号表达式求导,需要使用diff函数结合符号工具箱。下面分别介绍数值差分和符号求导的语法及使用示例。

1. 数值差分

diff函数用于计算向量或矩阵的差分。

语法
Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)
  • 参数说明
    • X:输入的向量或矩阵。
    • n:可选参数,指定差分的阶数,默认为1。
    • dim:可选参数,指定沿哪个维度进行差分,对于向量,该参数可忽略;对于矩阵,dim = 1 表示沿列方向差分,dim = 2 表示沿行方向差分。
  • 示例
% 向量差分
x = [1, 3, 6, 10];
dy = diff(x);
disp(dy);

% 二阶差分
d2y = diff(x, 2);
disp(d2y);

% 矩阵差分
A = [1, 2, 3; 4, 5, 6];
dy_col = diff(A, 1, 1); % 沿列方向一阶差分
dy_row = diff(A, 1, 2); % 沿行方向一阶差分
disp(dy_col);
disp(dy_row);

2. 符号求导

使用diff函数结合符号工具箱可以对符号表达式进行求导。

语法
Y = diff(f)
Y = diff(f, var)
Y = diff(f, var, n)
  • 参数说明
    • f:输入的符号表达式。
    • var:可选参数,指定对哪个符号变量求导,若省略,则对默认的符号变量求导。
    • n:可选参数,指定求导的阶数,默认为1。
  • 示例
% 定义符号变量
syms x;

% 定义符号表达式
f = x^3 + 2*x^2 + 3*x + 4;

% 对默认变量 x 求一阶导数
df = diff(f);
disp(df);

% 对指定变量 x 求二阶导数
d2f = diff(f, x, 2);
disp(d2f);

总结

  • diff函数用于数值差分,计算向量或矩阵元素之间的差值。
  • 结合符号工具箱,diff函数可以对符号表达式进行求导。在使用符号求导时,需要先使用syms函数定义符号变量。
syms x
% 定义函数 y
y = sin(x) - x^2 / 2;
% 求一阶导数 y'
y_prime = diff(y, x);
disp('一阶导数 y'' 为:');
disp(y_prime);
% 求二阶导数 y''
y_double_prime = diff(y, x, 2);
disp('二阶导数 y'''' 为:');
disp(y_double_prime);
% 求三阶导数 y'''
y_double_prime = diff(y, x, 3);
disp('三阶导数 y'''''' 为:');
disp(y_double_prime);

求非线性方程组的符号解

在MATLAB里,有多种方法可以求解非线性方程组,下面为你介绍两种常用的函数及其语法和使用示例。

1. fsolve函数

fsolve函数是MATLAB中用于求解非线性方程组的常用函数,它采用数值方法寻找方程组的根。

基本语法
x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
  • 参数说明
    • fun:表示一个函数句柄,该函数用于定义非线性方程组。此函数接收一个向量输入,返回一个包含方程组中每个方程计算结果的向量。
    • x0:是初始猜测值向量,也就是求解方程组时的起始点。合适的初始猜测值对求解结果和收敛速度有重要影响。
    • options:是可选参数,为优化选项结构体,可用于设置求解过程中的各种参数,例如最大迭代次数、误差容限等。
使用示例

假设要求解如下非线性方程组:
[
\begin{cases}
x_1^2 + x_2^2 - 1 = 0 \
x_1 - x_2^2 = 0
\end{cases}
]

% 定义非线性方程组的函数
function F = myfun(x)
    F(1) = x(1)^2 + x(2)^2 - 1;
    F(2) = x(1) - x(2)^2;
end

% 初始猜测值
x0 = [0.5; 0.5];

% 调用 fsolve 函数求解方程组
x = fsolve(@myfun, x0);

% 显示求解结果
disp('方程组的解为:');
disp(x);

2. vpasolve函数

vpasolve函数是符号工具箱中的函数,可用于求解符号形式的非线性方程组,它能给出符号解或数值近似解。

基本语法
sol = vpasolve(eqns,vars)
sol = vpasolve(eqns,vars,init_guess)
  • 参数说明
    • eqns:是一个符号表达式或符号表达式向量,用于定义非线性方程组。
    • vars:是一个符号变量或符号变量向量,代表方程组中的未知变量。
    • init_guess:是可选参数,为初始猜测值,可帮助求解器更快地收敛到解。
使用示例

同样求解上述非线性方程组:

% 定义符号变量
syms x1 x2;

% 定义非线性方程组
eqns = [x1^2 + x2^2 - 1 == 0, x1 - x2^2 == 0];

% 定义未知变量
vars = [x1, x2];

% 调用 vpasolve 函数求解方程组
sol = vpasolve(eqns, vars);

% 显示求解结果
disp('方程组的解为:');
disp(sol.x1);
disp(sol.x2);

总结

  • fsolve函数是数值求解器,需要将方程组定义为函数句柄,并且要提供初始猜测值。
  • vpasolve函数是符号求解器,使用符号表达式定义方程组,可给出符号解或数值近似解,也可提供初始猜测值来加速求解过程。

img

syms x y z
% 方程组 (1)
eq1_1 = log(x/y) == 9;
eq1_2 = exp(x + y) == 3;
solution1 = solve([eq1_1, eq1_2], [x, y]);
x1 = solution1.x;
y1 = solution1.y;
disp('方程组 (1) 的解为:');
disp(['x = ', char(x1)]);
disp(['y = ', char(y1)]);
% 方程组 (2)
eq2_1 = (4*x^2)/(4*x^2 + 1) == y;
eq2_2 = (4*y^2)/(4*y^2 + 1) == z;
eq2_3 = (4*z^2)/(4*z^2 + 1) == x;
solution2 = solve([eq2_1, eq2_2, eq2_3], [x, y, z]);
x2 = solution2.x;
y2 = solution2.y;
z2 = solution2.z;
disp('方程组 (2) 的解为:');
for i = 1:length(x2)
    disp(['解 ', num2str(i), ':']);
    disp(['x = ', char(x2(i))]);
    disp(['y = ', char(y2(i))]);
    disp(['z = ', char(z2(i))]);
end

利用符号表达式求z

syms x y
% 定义符号常数 x 和 y
x = sym('6');
y = sym('5');
% 定义表达式 z
z = (x + 1) / (sqrt(3 + x) - sqrt(y));
% 计算 z 的值
result = vpa(z);
disp(result);


syms a b
a=6;
b=5;
z = (a + 1) / (sqrt(3 + a) - sqrt(b));
disp(z);

化简表达式

在MATLAB里,能借助符号工具箱对表达式进行化简,下面为你介绍几个常用的化简函数及其语法与示例。

1. simplify函数

simplify函数是一个通用的化简函数,它能尝试运用多种规则对符号表达式进行化简。

语法
R = simplify(S)
  • 参数说明
    • S:输入的符号表达式。
    • R:化简后的符号表达式。
示例
% 定义符号变量
syms x;

% 定义符号表达式
S = (x^2 - 1)/(x - 1);

% 化简表达式
R = simplify(S);

% 显示化简结果
disp(R);

此例中,simplify函数把表达式 (x^2 - 1)/(x - 1) 化简为 x + 1

2. expand函数

expand函数主要用于展开表达式,像多项式展开、三角函数展开等。

语法
R = expand(S)
  • 参数说明
    • S:输入的符号表达式。
    • R:展开后的符号表达式。
示例
% 定义符号变量
syms x;

% 定义符号表达式
S = (x + 1)^2;

% 展开表达式
R = expand(S);

% 显示展开结果
disp(R);

在这个例子中,expand函数把表达式 (x + 1)^2 展开为 x^2 + 2*x + 1

3. factor函数

factor函数用于对多项式进行因式分解。

语法
R = factor(S)
  • 参数说明
    • S:输入的符号表达式,通常是多项式。
    • R:因式分解后的符号表达式。
示例
% 定义符号变量
syms x;

% 定义符号表达式
S = x^2 - 1;

% 因式分解表达式
R = factor(S);

% 显示因式分解结果
disp(R);

这里,factor函数把表达式 x^2 - 1 因式分解为 (x - 1)*(x + 1)

4. collect函数

collect函数可将表达式按照指定变量的幂次进行合并同类项。

语法
R = collect(S,v)
  • 参数说明
    • S:输入的符号表达式。
    • v:指定的变量。
    • R:合并同类项后的符号表达式。
示例
% 定义符号变量
syms x;

% 定义符号表达式
S = x^2 + 3*x + 2*x^2;

% 按 x 的幂次合并同类项
R = collect(S,x);

% 显示合并结果
disp(R);

此例中,collect函数把表达式 x^2 + 3*x + 2*x^2 合并为 3*x^2 + 3*x

在使用这些函数之前,要先运用syms函数定义符号变量。并且,不同的化简函数适用于不同的场景,你可以依据表达式的特点选择合适的函数。

syms beta1 beta2 x
% (1)化简 sin(beta1)*cos(beta2) - cos(beta1)*sin(beta2)
expr1 = sin(beta1)*cos(beta2) - cos(beta1)*sin(beta2);
simplified_expr1 = simplify(expr1);
disp('(1)化简结果为:');
disp(simplified_expr1);
% (2)化简 (4x^2 + 8x + 3)/(2x + 1)
expr2 = (4*x^2 + 8*x + 3)/(2*x + 1);
simplified_expr2 = simplify(expr2);
disp('(2)化简结果为:');
disp(simplified_expr2);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MrFlySand_飞沙

公众号【小知识酷】,搜索获取更

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值