Bit plane
一个数字化离散信号的位平面(bit plane)是一系列对应于一个给定的比特位置的比特,这些比特位置在每个二进制数字中代表信号。比如对于一个16比特的数据显示,存在一个16个位平面:第一个位平面包含最有意义的比特系列,第16个则包含最没有意义的比特。有可能会发现第一个位平面给出了最粗糙但是对于一个媒介来说最能接近的值,并且位平面的编号越高,对最终阶段的贡献越少。因此,增加一个位平面只是增加了更大的接近程度。
如果在第n个位平面上的一比特设定为1,而这位平面是在一个m-bit的数据集合上,那么该比特贡献的价值就是2(m-n),否则那就没有贡献值。因此位平面的贡献值是它撒谎能够一个位平面贡献值的一半。例如一个8-bit的数值10110101的位平面如下工作:
| Bit Plane | Value | Contribution | Running Total |
|---|---|---|---|
| 1st | 1 | 1 * 2^7 = 128 | 128 |
| 2nd | 0 | 0 * 2^6 =0 | 128 |
| 3rd | 1 | 1 * 2^5 = 32 | 160 |
| 4th | 1 | 1 * 2^4 = 16 | 176 |
| 5th | 0 | 0 * 2^3 = 0 | 176 |
| 6th | 1 | 1 * 2^2 = 4 | 180 |
| 7th | 0 | 0 * 2^1 = 0 | 180 |
| 8th | 1 | 1 * 2^0 = 1 | 181 |
位平面有时用作Bitmap的同义词;但是,技术上说,前者设计数据在存储上的位置,后者涉及数据本身。
使用位平面的一方面就是决定位平面是包含一段任意的噪音还是包含有意义的信息。
计算这个的一个方法就是比较每个像素(X,Y)和与它相邻的三个像素(X-1,Y), (X,Y-1) 和 (X-1,Y-1)。如果像素同其中至少两个相同,它就不是噪声。一个噪声位平面将含有49%到51%的像素是噪声。
本文探讨了位平面的概念及其在数字化离散信号处理中的应用。通过分析16比特显示中的位平面,解释了每个位平面的贡献度,并通过实例展示了如何计算不同位平面的值和贡献。
9793

被折叠的 条评论
为什么被折叠?



