机器学习Sklearn——红酒分类案例详解决策树模型参数

 

目录

1 分类树

1.1 红酒分类案例

1.1.1 导入包

1.1.2 观察、分割数据

1.1.3 三段论

2 参数介绍

2.1 重要参数

2.2 控制随机选项参数

2.3 剪枝参数

3 批量测试合适参数并画图

4 graphviz如何将dot文件转为png,pdf的方法

我们这里使用的是python库的sklearn机器学习库,这里面涵盖了几乎所有主流机器学习算法。之前的blog理论较多,实际案例做出来就行。参数讲解得不是很细,如今专门讲解sklearn,更细节些。

1 分类树

概念之前已经讲过了,在jupyter lab这个开发环境进行实验机器学习基础——分类算法之决策树、随机森林、Titanic乘客生存分类_chelsea_tongtong的博客-CSDN博客

我们直接上案例吧。

1.1 红酒分类案例

1.1.1 导入包

from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

1.1.2 观察、分割数据

  • 数据是字典,我们用pd.concat将其转换成列表
  • 178行,13列,说明特征值有13个
  • 目标值是有3个,说明分成3类
    array(['class_0', 'class_1', 'class_2'], dtype='<U7')
wine=load_wine()
wine
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
#CONCAT 函数 是用来将不同单元格里的文本等内容组合起来,但不会出现间隔符号的函数。
wine.feature_names
wine.targret_names

1.1.3 三段论

  • 三段论就是分类器建立、拟合模型、评估模型准确率
  • 建立树之前要下载graphviz这个模块
  • tree.export_graphviz()函数里面的参数filled是颜色,rouded是框框是圆还是方
clf = tree.DecisionTreeClassifier(criterion="entropy"
                                  ,max_depth=3
                                 #,min_samples_leaf=11
                                 #,min_samples_split=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值