目录
4 graphviz如何将dot文件转为png,pdf的方法
我们这里使用的是python库的sklearn机器学习库,这里面涵盖了几乎所有主流机器学习算法。之前的blog理论较多,实际案例做出来就行。参数讲解得不是很细,如今专门讲解sklearn,更细节些。
1 分类树
概念之前已经讲过了,在jupyter lab这个开发环境进行实验机器学习基础——分类算法之决策树、随机森林、Titanic乘客生存分类_chelsea_tongtong的博客-CSDN博客
我们直接上案例吧。
1.1 红酒分类案例
1.1.1 导入包
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
1.1.2 观察、分割数据
- 数据是字典,我们用pd.concat将其转换成列表
- 178行,13列,说明特征值有13个
- 目标值是有3个,说明分成3类
array(['class_0', 'class_1', 'class_2'], dtype='<U7')
wine=load_wine()
wine
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
#CONCAT 函数 是用来将不同单元格里的文本等内容组合起来,但不会出现间隔符号的函数。
wine.feature_names
wine.targret_names
1.1.3 三段论
- 三段论就是分类器建立、拟合模型、评估模型准确率
- 建立树之前要下载graphviz这个模块
- tree.export_graphviz()函数里面的参数filled是颜色,rouded是框框是圆还是方
clf = tree.DecisionTreeClassifier(criterion="entropy"
,max_depth=3
#,min_samples_leaf=11
#,min_samples_split=