学习笔记-频率域滤波(1)-基本概念

基本概念

复数

由欧拉公式 e j θ = cos ⁡ θ + j sin ⁡ θ e^{j\theta}=\cos\theta+j\sin\theta ejθ=cosθ+jsinθ 可推出:
C = R + j I C=R+jI C=R+jI

C = ∣ C ∣ ( cos ⁡ θ + j sin ⁡ θ ) C=|C|(\cos\theta+j\sin\theta) C=C(cosθ+jsinθ)

C = ∣ C ∣ e j θ C=|C|e^{j\theta} C=Cejθ

傅里叶级数

周期为T的周期函数 f ( t ) f(t) f(t)可表示为傅里叶级数:
f ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n T t f(t)=\sum_{n=-\infty}^\infty c_ne^{j\frac{2\pi n}Tt} f(t)=n=cnejT2πnt

c n = 1 T ∫ − T / 2 T / 2 f ( t ) e − j 2 π n T t d t c_n=\frac1T\int_{-T/2}^{T/2}f(t)e^{-j\frac{2\pi n}Tt}\mathrm dt cn=T1T/2T/2f(t)ejT2πntdt

离散冲激

x x x 表示一个离散变量。单位离散冲激 δ ( x ) \delta(x) δ(x) 定义为:
δ ( x ) = { 1 , x = 0 0 , x ≠ 0 \delta(x)=\left\{\begin{array}{l}1,\quad x=0\\0,\quad x\neq0\end{array}\right. δ(x)={1,x=00,x=0
其取样性质的形式为:
∑ x = − ∞ ∞ f ( x ) δ ( x ) = f ( 0 ) \sum_{x=-\infty}^{\infty}f(x)\delta(x)=f(0) x=f(x)δ(x)=f(0)
或更一般地使用 x = x 0 x=x_0 x=x0 处的离散冲激形式:
∑ x = − ∞ ∞ f ( x ) δ ( x − x 0 ) = f ( x 0 ) \sum_{x=-\infty}^{\infty}f(x)\delta(x-x_0)=f(x_0) x=f(x)δ(xx0)=f(x0)

傅里叶变换

连续单变量 t t t 的连续函数 f ( t ) f(t) f(t) 的傅里叶变换由 ℑ { f ( t ) } \Im\{f(t)\} {f(t)} 表示:
F ( μ ) = ℑ { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − j 2 π μ t d t (1) F(\mu)=\Im\{f(t)\}=\int_{-\infty}^\infty f(t)e^{-j2\pi\mu t}\mathrm dt \tag{1} F(μ)={f(t)}=f(t)ej2πμtdt(1)

f ( t ) = ℑ − 1 { F ( μ ) } = ∫ − ∞ ∞ F ( μ ) e j 2 π μ t d μ (2) f(t)=\Im^{-1}\{F(\mu)\}=\int_{-\infty}^\infty F(\mu)e^{j2\pi\mu t}\mathrm d\mu \tag{2} f(t)=1{F(μ)}=F(μ)ej2πμtdμ(2)
于是, t = t 0 t=t_0 t=t0 处的冲激的傅里叶变换为:
F ( μ ) = ℑ { δ ( t − t 0 ) } = ∫ − ∞ ∞ δ ( t − t 0 ) e − j 2 π μ t d t = 仅 在 t 0 处 有 值 e − j 2 π μ t 0 F(\mu)=\Im\{\delta(t-t_0)\}=\int_{-\infty}^\infty\delta(t-t_0)e^{-j2\pi\mu t}\mathrm dt\xlongequal{仅在t_0处有值}e^{-j2\pi\mu t_0} F(μ)={δ(tt0)}=δ(tt0)ej2πμtdtt0 ej2πμt0
而对 e j 2 π a t e^{j2\pi at} ej2πat 做傅里叶变换为:
F ( μ ) = ℑ { e j 2 π a t } = ∫ − ∞ ∞ e j 2 π a t e − j 2 π μ t d t = ∫ − ∞ ∞ e j 2 π ( a − μ ) t d t = δ ( μ − a ) F(\mu)=\Im\{e^{j2\pi at}\}=\int_{-\infty}^\infty e^{j2\pi at}e^{-j2\pi\mu t}\mathrm dt=\int_{-\infty}^\infty e^{j2\pi(a-\mu)t}\mathrm dt=\delta(\mu-a) F(μ)={ej2πat}=ej2πatej2πμtdt=ej2π(aμ)tdt=δ(μa)
因为当 μ ≠ a \mu\neq a μ=a 时上述积分式 e j θ e^{j\theta} ejθ 为复平面内的单位圆 积分为零
由此可求取冲激串 s Δ T ( t ) s_{\Delta T}(t) sΔT(t) 的傅里叶变换 冲激串定义为一串冲激的和:
s Δ T ( t ) = ∑ k = − ∞ ∞ δ ( t − k Δ T ) s_{\Delta T}(t)=\sum_{k=-\infty}^\infty \delta(t-k\Delta T) sΔT(t)=k=δ(tkΔT)
冲激串是周期为 Δ T \Delta T ΔT 的函数 可以表示为傅里叶级数:
s Δ T ( t ) = ∑ n = − ∞ ∞ c n e j 2 π n Δ T t s_{\Delta T}(t)=\sum_{n=-\infty}^\infty c_ne^{j\frac{2\pi n}{\Delta T}t} sΔT(t)=n=cnejΔT2πnt
式中 c n c_n cn 代入 s Δ T ( t ) s_{\Delta T}(t) sΔT(t)
c n = 1 Δ T ∫ − Δ T / 2 Δ T / 2 s Δ T ( t ) e − j 2 π n T t d t c_n=\frac1{\Delta T}\int_{-\Delta T/2}^{\Delta T/2}s_{\Delta T}(t)e^{-j\frac{2\pi n}Tt}\mathrm dt cn=ΔT1ΔT/2ΔT/2sΔT(t)ejT2πntdt
可发现在 [ − 1 Δ T , 1 Δ T ] [-\frac 1{\Delta T}, \frac 1{\Delta T}] [ΔT1,ΔT1] 区间内仅有一个冲激 因此:
c n = 1 Δ T ∫ − Δ T / 2 Δ T / 2 δ ( t ) e − j 2 π n T t d t = 1 Δ T e 0 = 1 Δ T c_n=\frac1{\Delta T}\int_{-\Delta T/2}^{\Delta T/2}\delta(t)e^{-j\frac{2\pi n}Tt}\mathrm dt=\frac1{\Delta T}e^0=\frac1{\Delta T} cn=ΔT1ΔT/2ΔT/2δ(t)ejT2πntdt=ΔT1e0=ΔT1
于是傅里叶级数变为:
s Δ T ( t ) = 1 Δ T ∑ n = − ∞ ∞ e j 2 π n Δ T t s_{\Delta T}(t)=\frac1{\Delta T}\sum_{n=-\infty}^\infty e^{j\frac{2\pi n}{\Delta T}t} sΔT(t)=ΔT1n=ejΔT2πnt
对其求傅里叶变换:
S ( μ ) = ℑ { s Δ T ( t ) } = ℑ { 1 Δ T ∑ n = − ∞ ∞ e j 2 π n Δ T t } = 1 Δ T ∑ n = − ∞ ∞ ℑ { e j 2 π n Δ T t } S(\mu)=\Im\{s_{\Delta T}(t)\}=\Im\left\{\frac1{\Delta T}\sum_{n=-\infty}^\infty e^{j\frac{2\pi n}{\Delta T}t}\right\}=\frac1{\Delta T}\sum_{n=-\infty}^\infty\Im\{e^{j\frac{2\pi n}{\Delta T}t}\} S(μ)={sΔT(t)}={ΔT1n=ejΔT2πnt}=ΔT1n={ejΔT2πnt}
在之前已得到 ℑ { e j 2 π a t } = δ ( μ − a ) \Im\{e^{j2\pi at}\}=\delta(\mu-a) {ej2πat}=δ(μa) 故有 ℑ { e j 2 π n Δ T t } = δ ( μ − n Δ T ) \Im\{e^{j\frac{2\pi n}{\Delta T}t}\}=\delta(\mu-\frac{n}{\Delta T}) {ejΔT2πnt}=δ(μΔTn) 代入:
S ( μ ) = 1 Δ T ∑ n = − ∞ ∞ ℑ { e j 2 π n Δ T t } = 1 Δ T ∑ n = − ∞ ∞ δ ( μ − n Δ T ) S(\mu)=\frac1{\Delta T}\sum_{n=-\infty}^\infty\Im\{e^{j\frac{2\pi n}{\Delta T}t}\}=\frac1{\Delta T}\sum_{n=-\infty}^\infty\delta(\mu-\frac{n}{\Delta T}) S(μ)=ΔT1n={ejΔT2πnt}=ΔT1n=δ(μΔTn)
这表示周期为 T T T 的冲激串 其傅里叶变换仍然为冲激串 其周期为 1 T \frac{1}{T} T1

卷积

卷积算子由 ⋆ \star 表示,定义为:
( f ⋆ h ) ( t ) = ∫ − ∞ ∞ f ( τ ) h ( t − τ ) d τ (3) (f\star h)(t)=\int_{-\infty}^\infty f(\tau)h(t-\tau)\mathrm d\tau \tag{3} (fh)(t)=f(τ)h(tτ)dτ(3)
给定 f ( t ) f(t) f(t) 的傅里叶变换为 F ( μ ) F(\mu) F(μ) h ( t ) h(t) h(t) 的傅里叶变换为 H ( μ ) H(\mu) H(μ),对式 (3) 求傅里叶变换:
ℑ { ( f ⋆ h ) ( t ) } = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( τ ) h ( t − τ ) d τ ] e − j 2 π μ t d t = 交 换 积 分 顺 序 ∫ − ∞ ∞ f ( τ ) [ ∫ − ∞ ∞ h ( t − τ ) e − j 2 π μ t d t ] d τ = ∫ − ∞ ∞ f ( τ ) [ ∫ − ∞ ∞ h ( t − τ ) e − j 2 π μ ( t − τ ) e − j 2 π μ τ d ( t − τ ) ] d τ = ∫ − ∞ ∞ f ( τ ) [ e − j 2 π μ τ ∫ − ∞ ∞ h ( x ) e − j 2 π μ ( x ) d x ] d τ = ∫ − ∞ ∞ f ( τ ) [   e − j 2 π μ τ H ( μ )   ] d τ = H ( μ ) ∫ − ∞ ∞ f ( τ ) e − j 2 π μ τ d τ = H ( μ ) F ( μ ) = ( H ⋅ F ) ( μ ) \begin{aligned} \Im\{(f\star h)(t)\}&=\int_{-\infty}^\infty\left[\int_{-\infty}^\infty f(\tau)h(t-\tau)\mathrm d\tau\right]e^{-j2\pi\mu t}\mathrm dt \\[4ex] &\xlongequal{交换积分顺序}\int_{-\infty}^\infty f(\tau)\left[\int_{-\infty}^\infty h(t-\tau)e^{-j2\pi\mu t}\mathrm dt\right]\mathrm d\tau \\[4ex] &=\int_{-\infty}^\infty f(\tau)\left[\int_{-\infty}^\infty h(t-\tau)e^{-j2\pi\mu(t-\tau)}e^{-j2\pi\mu\tau}\mathrm d(t-\tau)\right]\mathrm d\tau\\[4ex] &=\int_{-\infty}^\infty f(\tau)\left[e^{-j2\pi\mu\tau}\int_{-\infty}^\infty h(x)e^{-j2\pi\mu(x)}\mathrm dx\right]\mathrm d\tau\\[4ex] &=\int_{-\infty}^\infty f(\tau)[\ e^{-j2\pi\mu\tau}H(\mu)\ ]\mathrm d\tau\\[4ex] &=H(\mu)\int_{-\infty}^\infty f(\tau)e^{-j2\pi\mu\tau}\mathrm d\tau\\[4ex] &=H(\mu)F(\mu)=(H\cdot F)(\mu) \end{aligned} {(fh)(t)}=[f(τ)h(tτ)dτ]ej2πμtdt f(τ)[h(tτ)ej2πμtdt]dτ=f(τ)[h(tτ)ej2πμ(tτ)ej2πμτd(tτ)]dτ=f(τ)[ej2πμτh(x)ej2πμ(x)dx]dτ=f(τ)[ ej2πμτH(μ) ]dτ=H(μ)f(τ)ej2πμτdτ=H(μ)F(μ)=(HF)(μ)
于是得到了卷积定理的一半:
( f ⋆ h ) ( t ) ⇔ ( H ⋅ F ) ( μ ) (f\star h)(t)\Leftrightarrow(H\cdot F)(\mu) (fh)(t)(HF)(μ)
类似地,可以推出另一半:
( f ⋅ h ) ( t ) ⇔ ( H ⋆ F ) ( μ ) (f\cdot h)(t)\Leftrightarrow(H\star F)(\mu) (fh)(t)(HF)(μ)
这说明频域的卷积类似于空间域的乘积,空间域的卷积类似于频域的乘积。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天枢小生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值