首先先要明确傅里叶是干啥的
任何函数都可以表示为不同频率的正弦/余弦之和的形式。
从这句话就可以理解了,傅里叶是为了分解函数的,就是把一个函数分解成其他若干个简单周期函数,这样我们就可以在数学层面上对一些无法操作的函数进行计算了。
可以间接地认为是用一些函数的组合来拟合一些函数。
为什么会出现频域
确实是很多函数的组合,然而我们如何才能很清晰地看出来这些密密麻麻的堆在一起的函数呢?
最关键的一点就是找到这些堆在一起的函数的不同之处。
不同之处在哪?频率不同,相位不同,幅值不同
然而最好用的计算参数就是频率
因此把频率作为坐标轴,因此我堆在一起的函数就散开了。
每个频率都有每个频率的函数,实际表现在二维图时就是一条一条竖直的曲线。
(这里会有疑问,为什么有些的频域是连续的曲线?那是因为他们在时间域并不是连续的函数,因此他们的组合函数就比较怪异,频率并不是相互独立了,而是出现了非整数频率,在两个频率的间隔还会有值出现,因此它们连成了一条线。你要问我为啥会这样,我这里先不做解释。连续函数的变换叫做傅里叶级数,离散函数的变换交过傅里叶变换。)
复数域具体是啥
C=R+jI
其实大家完全可以理解为就是一个坐标系统x轴为复数实部,y轴为复数虚部,因此上式可以写成(R,I)
其共轭为
C*=R-jI
而另一种写法就是极坐标,引入角度概念忽略坐标概念
C=|C|(cosθ&#