傅里叶频域,复数域,冲激函数,香农采样(不介绍公式-只介绍是啥)另一种思维

首先先要明确傅里叶是干啥的

任何函数都可以表示为不同频率的正弦/余弦之和的形式。
从这句话就可以理解了,傅里叶是为了分解函数的,就是把一个函数分解成其他若干个简单周期函数,这样我们就可以在数学层面上对一些无法操作的函数进行计算了。
可以间接地认为是用一些函数的组合来拟合一些函数。

为什么会出现频域

确实是很多函数的组合,然而我们如何才能很清晰地看出来这些密密麻麻的堆在一起的函数呢?
最关键的一点就是找到这些堆在一起的函数的不同之处。
不同之处在哪?频率不同,相位不同,幅值不同
然而最好用的计算参数就是频率
因此把频率作为坐标轴,因此我堆在一起的函数就散开了。
每个频率都有每个频率的函数,实际表现在二维图时就是一条一条竖直的曲线。
(这里会有疑问,为什么有些的频域是连续的曲线?那是因为他们在时间域并不是连续的函数,因此他们的组合函数就比较怪异,频率并不是相互独立了,而是出现了非整数频率,在两个频率的间隔还会有值出现,因此它们连成了一条线。你要问我为啥会这样,我这里先不做解释。连续函数的变换叫做傅里叶级数,离散函数的变换交过傅里叶变换。)

复数域具体是啥

C=R+jI

其实大家完全可以理解为就是一个坐标系统x轴为复数实部,y轴为复数虚部,因此上式可以写成(R,I)
其共轭为

C*=R-jI

而另一种写法就是极坐标,引入角度概念忽略坐标概念

C=|C|(cosθ&#
### FFT在信号频谱分析及处理中的应用 #### 方法概述 对于信号频谱分析而言,FFT是一种高效的算法来实现离散傅里叶变换(DFT)[^1]。当面对一个模拟信号时,在进行任何类型的数字信号处理之前,该信号需先通过模数转换(ADC)过程被转化为一系列离散数值表示形式;这一过程中遵循奈奎斯特-香农采样定理的要求,即采样率至少应为最高频率成分的两倍以上以避免混叠现象的发生[^2]。 一旦获得了足够的样本数量(通常是2的幂),便可以调用MATLAB或其他编程环境所提供的`fft()`函数来进行快速傅立叶变换操作: ```matlab Y = fft(X); ``` 此命令会针对输入数组X执行一次完整的傅立叶变换,并返回相应的复数结果集Y。值得注意的是,如果希望控制输出序列的具体长度,则可以通过第二个参数n指定期望的结果点数: ```matlab Y = fft(X, n); ``` 此外,还可以进一步限定沿哪个维度实施变换动作,这对于多维数据结构尤其有用: ```matlab Y = fft(X, [], dim); ``` 上述方法能够有效地揭示原始时间内的周期性和趋势特征,从而帮助识别潜在模式并支持后续决策制定过程。 #### 实际案例展示 假设有一个由正弦波组成的简单复合信号s(t),其表达式如下所示: \[ s(t)=\sin (2 \pi f_1 t)+0.5 \sin (2 \pi f_2 t+\phi)\] 其中\(f_1=5Hz\) 和 \(f_2=8Hz\) 分别代表两个同频率分量,而相位偏移角设定了初相位置。\(\phi=\frac{\pi}{4}\) 现在尝试对该连续时间信号施加均匀间隔抽样的方式获取有限个观测值构成向量S,接着运用FFT对其进行频域映射解析。以下是具体实现代码片段: ```matlab % 参数设定 Fs = 32; % Sampling frequency(Hz) T = 1/Fs; L = 64; % Length of signal t = (0:L-1)*T; % 构建测试信号 f1 = 5; f2 = 8; phi = pi/4; signal = sin(2*pi*f1*t) + 0.5*sin(2*pi*f2*t+phi); % 执行FFT变换 Y = fft(signal); % 计算双边幅度谱P2和单边幅度谱P1 P2 = abs(Y/L); P1 = P2(1:L/2+1); P1(2:end-1) = 2*P1(2:end-1); % 频率轴定义 f = Fs*(0:(L/2))/L; % 绘制图形对比原有时图象与新得来的频域特性曲线 subplot(2,1,1), plot(t,signal,'r'), title('Time Domain Signal') xlabel('Time(s)'), ylabel('Amplitude') subplot(2,1,2), plot(f,P1,'b-o'),title('Single-Sided Amplitude Spectrum of X(t)') xlabel('Frequency(Hz)'),ylabel('|P1(f)|'); ``` 这段程序首先创建了一个包含两种同频率成分的人工合成音频片段,随后对其进行了标准的快速傅立叶变换处理流程。最终绘制出了对应的双侧振幅光谱以及简化后的单侧版本供观察比较之用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值