数论基础

素数的判定

bool isprime(int n){
	for(int i = 2; i <= sqrt(n); i++)
		if(n % i == 0) return false;
	return true;
}

素数筛

时间复杂度 O ( n ) O(n) O(n)

bool isprime[maxn];
int prime[maxn]; //保存的全是素数
int cnt;    //素数的个数
void getprime(int n){
	memset(isprime, true, sizeof isprime);
	isprime[0] = isprime[1] = false;
	cnt=0;
	for(int i = 2; i <= n; i++){
		if(isprime[i])
			prime[cnt++] = i;
		for(int j = 0; j < cnt && i * prime[j] <= n; j++){
			isprime[i * prime[j]] = false;
			if(i % prime[j] == 0) break;
		}
	}
}

素因数分解

N = p 1 c 1 p 2 c 2 … p m c m N=p_1^{c_1}p_2^{c_2}…p_m^{c_m} N=p1c1p2c2pmcm
时间复杂度 O ( n ) O(\sqrt{n}) O(n )

int m;
int p[maxn],c[maxn];
void divide(int n){
	m=0;
	for(int i = 2; i <= sqrt(n); i++){
		if(n % i == 0){
			p[++m] = i,c[m] = 0;
			while(n % i == 0) n /= i, c[m]++;
		}
	}
	if(n > 1)  //n是素数
		p[++m] = n, c[m] = 1;
	for(int i = 1; i <= m; i++)
		cout<<p[i]<<'^'<<c[i]<<endl;
}

求 N 的正约数集合

时间复杂度 O ( n ) O(\sqrt{n}) O(n )

int factor[maxn];
void fac(int n){
	int m=0;
	for(int i = 1; i*i <= n; i++){
		if(n % i == 0){
			factor[++m] = i;
			if (i != n/i) factor[++m] = n/i;
		}
	}
	for(int i = 1; i <= m; i++)
		cout<<factor[i]<<endl;
}

扩展欧几里得

B e z o u t Bezout Bezout 定理

对于任意整数 a , b a,b a,b,存在一对整数 x , y x,y x,y,满足 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

//返回a,b的最大公约数,并算出这样的x,y;
int exgcd(int a, int b, int &x, int &y){
	if (b == 0) { x = 1, y = 0; return a; }
	int d = exgcd(b, a % b, x, y);
	int z = x; x = y; y = z - y * (a / b);
	return d;
}

乘法逆元

  若整数 b , m b,m b,m 互质,并且 b ∣ a b|a ba,则存在一个整数 x x x,使得 a / b = a ∗ x ( m o d   m ) a/b=a*x(mod \ m) a/b=ax(mod m)。称 x x x b b b 的模 m m m 乘法逆元,记为 b − 1 ( m o d   m ) b^{-1}(mod\ m) b1(mod m)
   b ∗ x ≡ 1 ( m o d   m ) b*x \equiv1(mod\ m) bx1(mod m) x x x 的解就是 b b b 的逆元,可以通过扩展欧几里得算出。
求解过程
  由上式子 b ∗ x ≡ 1 ( m o d   m ) b*x \equiv1(mod\ m) bx1(mod m) b ∗ x − 1 b*x-1 bx1 m m m 的整数倍,我们假设就为 − y -y y 倍,即 b ∗ x − 1 = − m ∗ y b*x-1=-m*y bx1=my,所以就有 b ∗ x + m ∗ y = 1 b*x+m*y=1 bx+my=1
乘法逆元递推
i n v [ i ] = ( p − p / i ) ∗ i n v [ p % i ] % p ( p ! = 2 , 且 为 素 数 ) inv[i]=(p-p/i)*inv[p \% i] \%p(p!=2,且为素数) inv[i]=(pp/i)inv[p%i]%p(p!=2,)

线性同余方程

  给定整数 a , b , m a,b,m a,b,m,求一个整数 x x x 满足 a ∗ x ≡ b ( m o d   m ) a*x \equiv b(mod\ m) axb(mod m),或者给出无解,有解仅当 g c d ( a , m ) ∣ b gcd(a,m)|b gcd(a,m)b。因为未知数 x x x 的指数为 1 1 1,所以我们称之为一次同余方程,也称线性同余方程。
   a ∗ x ≡ b ( m o d   m ) a*x\equiv b(mod\ m) axb(mod m) 等价于 a ∗ x − b a*x-b axb m m m 的倍数,不妨设为 − y -y y 倍。于是,该方程可以改写为 a ∗ x + m ∗ y = b a*x+m*y=b ax+my=b,则该 x x x 就为方程的解。
  根据 B e z o u t Bezout Bezout 定理及其证明过程,线性同余方程有解仅当 g c d ( a , m ) ∣ b gcd(a,m)|b gcd(a,m)b
  所以存在整数 k k k 使得 k = b / g c d ( a , m ) k=b/gcd(a,m) k=b/gcd(a,m),即 g c d ( a , m ) = b / k gcd(a,m)=b/k gcd(a,m)=b/k。所以有 a ∗ ( x / k ) + m ∗ ( y / k ) = g c d ( a , m ) a*(x/k)+m*(y/k)=gcd(a,m) a(x/k)+m(y/k)=gcd(a,m),令 x ′ = x / k , y ′ = y / k x^{&#x27;}=x/k,y^{&#x27;}=y/k x=x/k,y=y/k,所以有 a ∗ x ′ + m ∗ y ′ = g c d ( a , m ) a*x^{&#x27;}+m*y^{&#x27;}=gcd(a,m) ax+my=gcd(a,m)。可以通过扩展欧几里得算出 x ′ x^{&#x27;} x 从而算出 x x x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值