【李宏毅】机器学习 笔记03(Tips of gradient descent)

1、Adagrad
Adagrad是解决不同参数应该使用不同的更新速率的问题。Adagrad自适应地为各个参数分配不同学习率的算法。

公式如下:

 

2、Stochastic Gradient Descent(SGD:随机梯度下降)
如果使用梯度下降法(批量梯度下降法),那么每次迭代过程中都要对个样本进行求梯度,所以开销非常大,随机梯度下降的思想就是随机采样一个样本来更新参数,那么计算开销就下降了 

 

3、Feature Scaling(特征缩放)-- 使下降加快
当特征值有相似的范围的话梯度下降会比较快

具体做法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值