Instance segmentation: MNC、FCIS、Mask R-CNN

本文对比了三种实例分割方法:Muti-task Network Cascades(MNC)、Fully Convolutional Instance-aware Semantic Segmentation(FCIS)和Mask R-CNN。MNC通过不同任务的级联实现实例区分,FCIS作为首个全卷积端到端解决方案,超越MNC,而Mask R-CNN通过扩展Faster R-CNN并引入RoIAlign层改进了定位精度,成为新的领先者。
摘要由CSDN通过智能技术生成

Paper1:《Instance-aware Semantic Segmentation via Multi-task Network Cascades》

本论文为CVPR16 arxiv:1512 Micorsoft Research
Author:Jifeng Dai Kaiming He Jian Sun

这里写图片描述
(1)提出Muti-task Network Cascades(多任务网络级联,MNC),由differentiating instancesestimating maskscategorizing object组成(三者共享卷积)。
这里写图片描述
(2)single-step training、end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值