直接阈值化和自适应阈值化

本文介绍了OpenCV中的两种阈值化方法:直接阈值化和自适应阈值化。直接阈值化使用全局阈值将图像二值化,而自适应阈值化则根据局部区域确定阈值,适用于处理光照变化的图像。文章详细阐述了两种方法的原理、参数设置及效果对比,并提供了官方文档链接和示例代码。
摘要由CSDN通过智能技术生成

0 前言

阈值化在图像处理中是一种常用的操作,比如图像的二值化就是一种最常见的一种阈值化操作。OpenCV中提供了直接阈值化操作cv::threshold()和自适应阈值化操作cv::adaptiveThreshold()两种接口。

主要参照:

https://blog.csdn.net/gongjianbo1992/article/details/108313081?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_title~default-1.control&spm=1001.2101.3001.4242

https://www.cnblogs.com/yinliang-liang/p/9293310.html

https://blog.csdn.net/Vichael_Chan/article/details/100584013

官方文档参考:

https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57

https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#ga72b913f352e4a1b1b397736707afcde3

1.直接阈值化 cv2::threshold()

选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了。

官方参考文档:https://docs.opencv.org/3.4/d7/d1b/group__imgproc__mi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值