深度学习Task1 线性回归

1、矢量计算的两种方法

import torch
import time
n = 1000
a = torch.ones(n)
b = torch.ones(n)

define a timer class to record time

class Timer(object):
“”“Record multiple running times.”""
def init(self):
self.times = []
self.start()

def start(self):
    # start the timer
    self.start_time = time.time()

def stop(self):
    # stop the timer and record time into a list
    self.times.append(time.time() - self.start_time)
    return self.times[-1]

def avg(self):
    # calculate the average and return
    return sum(self.times)/len(self.times)

def sum(self):
    # return the sum of recorded time
    return sum(self.times)

首先将两个向量使用for循环按元素逐一做标量加法。

timer = Timer()
c = torch.zeros(n)
for i in range(n):
c[i] = a[i] + b[i]
‘%.5f sec’ % timer.stop()
使用torch来将两个向量直接做矢量加法:

timer.start()
d = a + b
‘%.5f sec’ % timer.stop()

2、线性回归模型从零开始的实现

%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random

print(torch.version)

生成数据集

使用线性模型来生成数据集,生成一个1000个样本的数据集

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2

features = torch.randn(num_examples, num_inputs,
dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),
dtype=torch.float32)

使用图像来展示生成的数据

plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);

读取数据集

def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
random.shuffle(indices) # random read 10 samples
for i in range(0, num_examples, batch_size):
j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # the last time may be not enough for a whole batch
yield features.index_select(0, j), labels.index_select(0, j)
batch_size = 10

for X, y in data_iter(batch_size, features, labels):
print(X, ‘\n’, y)
break

初始化模型参数

w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)

w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)

定义模型

定义用来训练参数的训练模型:

def linreg(X, w, b):
return torch.mm(X, w) + b

定义损失函数

def squared_loss(y_hat, y):
return (y_hat - y.view(y_hat.size())) ** 2 / 2

定义优化函数

def sgd(params, lr, batch_size):
for param in params:
param.data -= lr * param.grad / batch_size # ues .data to operate param without gradient track

训练

当数据集、模型、损失函数和优化函数定义完了之后就可来准备进行模型的训练了。
lr = 0.03
num_epochs = 5

net = linreg
loss = squared_loss
for epoch in range(num_epochs): # training repeats num_epochs times
# in each epoch, all the samples in dataset will be used once

# X is the feature and y is the label of a batch sample
for X, y in data_iter(batch_size, features, labels):
    l = loss(net(X, w, b), y).sum()  
    # calculate the gradient of batch sample loss 
    l.backward()  
    # using small batch random gradient descent to iter model parameters
    sgd([w, b], lr, batch_size)  
    # reset parameter gradient
    w.grad.data.zero_()
    b.grad.data.zero_()
train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))

w, true_w, b, true_b

线性回归模型使用pytorch的简洁实现

import torch
from torch import nn
import numpy as np
torch.manual_seed(1)

print(torch.version)
torch.set_default_tensor_type(‘torch.FloatTensor’)

生成数据集

num_inputs = 2
num_examples = 1000

true_w = [2, -3.4]
true_b = 4.2

features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

读取数据集

import torch.utils.data as Data
batch_size = 10
dataset = Data.TensorDataset(features, labels)
data_iter = Data.DataLoader(
dataset=dataset, # torch TensorDataset format
batch_size=batch_size, # mini batch size
shuffle=True, # whether shuffle the data or not
num_workers=2, # read data in multithreading
)
for X, y in data_iter:
print(X, ‘\n’, y)
break

定义模型

class LinearNet(nn.Module):
def init(self, n_feature):
super(LinearNet, self).init() # call father function to init
self.linear = nn.Linear(n_feature, 1) # function prototype: torch.nn.Linear(in_features, out_features, bias=True)

def forward(self, x):
    y = self.linear(x)
    return y

net = LinearNet(num_inputs)
print(net)

method one

net = nn.Sequential(
nn.Linear(num_inputs, 1)
# other layers can be added here
)

method two

net = nn.Sequential()
net.add_module(‘linear’, nn.Linear(num_inputs, 1))

method three

from collections import OrderedDict
net = nn.Sequential(OrderedDict([
(‘linear’, nn.Linear(num_inputs, 1))
# …
]))

print(net)
print(net[0])

初始化模型参数

from torch.nn import init

init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0) # or you can use net[0].bias.data.fill_(0) to modify it directly
for param in net.parameters():
print(param)

定义损失函数

loss = nn.MSELoss() # nn built-in squared loss function
# function prototype: torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')

定义优化函数

import torch.optim as optim

optimizer = optim.SGD(net.parameters(), lr=0.03) # built-in random gradient descent function
print(optimizer) # function prototype: torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)

训练

num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # reset gradient, equal to net.zero_grad()
l.backward()
optimizer.step()
print(‘epoch %d, loss: %f’ % (epoch, l.item()))
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值