概率论组队学习

随机事件与随机变量

随机现象: 现实生活中,一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种。
样本空间:一个试验所有可能的集合。
样本点:试验的每一种可能的结果。
随机事件:样本空间满足一定条件的子集。

概率
定义:每个事件AAA,定义一个实数P(A)P(A)P(A)与之对应,若函数。

概率公理:

非负性:0<P(A)<=10<P(A)<=10<P(A)<=1;
可加性:若事件A1,A2,A3,…A_1,A_2,A_3,…A
1

,A
2

,A
3

,…两两互斥,即对于i,j=1,2,…,i≠j,Ai∩Aj=ϕi,j=1,2,…,i \neq j ,A_i \cap A_j = \phii,j=1,2,…,i


=j,A
i

∩A
j

=ϕ,均有P(A1∪A2∪…)=P(A1)+P(A2)+…P(A_1 \cup A_2 \cup …)=P(A_1) +P(A_2) +…P(A
1

∪A
2

∪…)=P(A
1

)+P(A
2

)+…
P(Ω)=1P(\Omega)=1P(Ω)=1;
古典概率
定义:设随机事件 EEE 的样本空间中只有有限个样本点,即 Ω={ω1,ω2,…,ωn}\Omega= { \omega_1, \omega_2,…, \omega_n }Ω={ω
1


2

,…,ω
n

},其中, nnn 为样本点的总数。每个样本点ωi(i=1,2,…,n)\omega_i (i =1,2,…,n)ω
i

(i=1,2,…,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。若事件 AAA 包含个mmm 个样本点,则事件 AAA 的概率定义为:
P(A)=事件A包含的基本事件数基本事件总数P(A) = \frac {事件A包含的基本事件数} {基本事件总数}P(A)=
基本事件总数
事件A包含的基本事件数

条件概率
定义:设 AAA 和 BBB 是两个事件,且P(B)>0P(B)>0P(B)>0,称 P(A∣B)=P(AB)P(B)P(A|B) = \frac {P(AB)} {P(B)}P(A∣B)=
P(B)
P(AB)

为在事件 BBB 发生的条件下,事件 AAA 发生的概率。

由于条件概率所关心的事件都是事件B的子事件,可以把条件概率看作B上的概率律,即把事件B看成全空间的必然事件。

P(A∣B)=事件A且B的结果数事件B的结果数P(A|B) = \frac {事件A且B的结果数}{事件B的结果数}P(A∣B)=
事件B的结果数
事件A且B的结果数

全概率公式和贝叶斯公式
全概率公式定义:设B1,B2,…B_1,B_2,…B
1

,B
2

,…是样本空间Ω\OmegaΩ的一个划分,AAA 为任一事件,则P(A)=∑∞i=1P(Bi)P(A∣Bi)P(A) = \sum_{i=1}^{\infty } {P(B_i)}P(A|B_i)P(A)=∑
i=1


P(B
i

)P(A∣B
i

)称为全概率公式。
贝叶斯公式定义:设B1,B2,…B_1,B_2,…B
1

,B
2

,…是样本空间Ω\OmegaΩ的一个划分,则对任一事件 $ A(P(A)>0)$ ,有$P(B_i|A) =\frac {P(B_i A)} {P(A)} = \frac {P(A|B_i )P(B_i)} {\sum_{j=1}^{\infty }P( B_j)P(A|B_j)} ,i=1,2,… $ 称上式为贝叶斯公式。

贝叶斯准则还可以用来进行因果推理。有许多“原因"可以造成某一“结果”。现在设我们观察到某-结果,希望推断造成这个结果出现的“原因”。现在设事件A1,…,AnA1,… ,AnA1,…,An是原因,而BBB代表由原因引起的结果。 P(B∣Ai)P(B|Ai)P(B∣Ai)表示在因果模型中由“原因”AiAiAi造成结果B出现的概率。当观察到结果BBB的时候,我们希望反推结果BBB是由原因AiAiAi造成的概率P(Ai∣B)。P(Ai∣B)P(Ai|B)。P(Ai|B)P(Ai∣B)。P(Ai∣B)为由于代表新近得到的信息BBB之后AiAiAi出现的概率,称之为后验概率,而原来的P(Ai)P(Ai)P(Ai)就称为先验概率。

随机变量
定义:设 EEE 是随机试验,Ω\OmegaΩ 是样本空间,如果对于每一个 ω∈Ω\omega \in \Omegaω∈Ω。都有一个确定的实数 X(ω)X(\omega)X(ω) 与之对应,若对于任意实 x∈Rx \in Rx∈R , 有 {ω:X(ω)<x}∈F{\omega :X(\omega) < x } \in F{ω:X(ω)<x}∈F ,则称 Ω\OmegaΩ 上的单值实函数 X(ω)X(\omega)X(ω) 为一个随机变量。

离散型随机变量
定义:如果随机变量 XXX 的全部可能取值只有有限多个或可列无穷多个,则称 XXX 为离散型随机变量。

随机变量的数字特征
数学期望
离散型:E(X)=∑ixipiE(X) = \sum_{i} {x_ip_i}E(X)=∑
i

x
i

p
i

连续型:E(X)=∫+∞−∞xf(x)dxE(X)= \int_{- \infty}^{+ \infty}{xf(x)}dxE(X)=∫
−∞
+∞

xf(x)dx
方差
Var(X)=E{[X−E(X)]2}Var (X) =E{ [X-E(X)]^2}Var(X)=E{[X−E(X)]
2
}
并且称 Var(X)−−−−−−√\sqrt{Var(X)}
Var(X)

为 XXX 的标准差或均方差。

协方差
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}Cov(X, Y) = E{ [X-E(X)] [Y-E(Y)]}Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}
当 Var(X)−−−−−−√>0,Var(Y)−−−−−−√>0\sqrt {Var(X)} >0 ,\sqrt {Var(Y)} >0
Var(X)

0,
Var(Y)

0 时,称
ρ(X,Y)=Cov(X,Y)Var(X)√Var(Y)√\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt {Var(X)} \sqrt {Var(Y)}}
ρ(X,Y)=
Var(X)

Var(Y)

Cov(X,Y)

为 X,YX,YX,Y 的相关系数,它是无纲量的量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值