1 准确度的陷阱和混淆矩阵
分类准确度的问题:
一个癌症预测系统,输入体检信息,可以判断是否有癌症。预测准确度: 99.9%。如果癌症产生的概率只有0.1%,我们的系统预测所有人都是健康,即可达到99.9%的准确率。
对于极度偏斜(Skewed Data)的数据,只使用分类准确度是远远不够的。使用混淆矩阵做进一步的分析。
2 精准率和召回率
3 精准率、召回率和F1 Score的衡量效果
4 精准率、召回率的平衡
精准率和召回率是相互制约的。一方增大,另一方就会减小。
5 实现混淆矩阵,精准率和召回率
import numpy as np
from sklearn import datasets
digits = datasets.load_digits()
x = digits.data
y = digits.target.copy()
# 制作极度偏斜的数据
y[digits.target == 9] = 1
y[digits.target != 9] = 0
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state = 666)
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(x_train, y_train)
log_reg.score(x_test, y_test)
>>>0.9755555555555555
y_log_predict = log_reg.predict(x_test)
def TN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 0))
TN(y_test, y_log_predict)
>>>403
def FP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 1))
FP(y_test, y_log_predict)
>>>2
def FN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 1) & (y_predict == 0))
FN(y_test, y_log_predict)
>>>9
def TP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np