文章目录
1、 什么是RDD
- 为什么要有RDD?
在许多迭代式算法(比如机器学习、图算法等)和交互式数据挖掘中,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,之前的MapReduce框架采用非循环式的数据流模型,把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。且这些框架只能支持一些特定的计算模式(map/reduce),并没有提供一种通用的数据抽象。
AMP实验室发表的一篇关于RDD的论文:《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》就是为了解决这些问题的
RDD提供了一个抽象的数据模型,让我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换操作(函数),不同RDD之间的转换操作之间还可以形成依赖关系,进而实现管道化,从而避免了中间结果的存储,大大降低了数据复制、磁盘IO和序列化开销,并且还提供了更多的API(map/reduec/filter/groupBy…)
- RDD是什么?
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。
(Resilient Distributed Dataset)RDD单词拆解
- Resilient:它是弹性的,RDD中的数据可以保存在内存中或者磁盘里面
- Distributed:它里面的元素师分布式存储的,可以用于分布式计算
- Dataset:它是一个集合,可以存放很多元素
2、RDD的主要属性
1、Alist of partitions:
一组分片(Partition)/一个分区(Partition)列表,即数据集的基本组成单位。
对于RDD来说,每个分片都会被一个计算任务处理,分片数决定并行度。
用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。
2.A function for computing each split :
一个函数会被作用在每一个分区。
spark中RDD的计算是一分区为单位的,compute函数会被作用到每一个分区上。
3.A list of dependencies on other RDDs:
一个RDD会依赖于其他多个RDD。
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。(Spark的容错机制)
4.Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):
Spark中的分区函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。
对于KV类型的RDD会有一个Partitioner函数,即RDD的分区函数(可选项)
只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数决定了RDD本身的分区数量,也决定了parent RDD Shuffle输出时的分区数量。
5.Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):
可选项,一个列表,存储每个Partition的位置(preferred location)。
对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照"移动数据不如移动计算"的理念,Spark在进行任务调度的时候,会尽可能选择那些存有数据的worker节点来进行任务计算。
●总结
RDD 是一个数据集,不仅表示了数据集,还表示了这个数据集从哪来,如何计算。
主要属性包括
1.多分区
2.计算函数
3.依赖关系
4.分区函数(默认是hash)
5.最佳位置
3、RDD的3种创建方式
1.由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
val rdd1 = sc.textFile(“hdfs://node01:8020/wordcount/input/words.txt”)
2.通过已有的RDD经过算子转换生成新的RDD
val rdd2=rdd1.flatMap(_.split(" "))
3.由一个已经存在的Scala集合创建
val rdd3 = sc.parallelize(Array(1,2,3,4,5,6,7,8))
或者
val rdd4 = sc.makeRDD(List(1,2,3,4,5,6,7,8))
makeRDD方法底层调用了parallelize方法
4、RDD的算子分类
●分类
RDD的算子分为两类:
1.Transformation转换操作:返回一个新的RDD
2.Action动作操作:返回值不是RDD(无返回值或返回其他的)
●注意:
RDD不实际存储真正要计算的数据,而是记录了数据的位置在哪里,数据的转换关系(调用了什么方法,传入什么函数)
RDD中的所有转换都是惰性求值/延迟执行的,也就是说并不会直接计算。只有当发生一个要求返回结果给Driver的Action动作时,这些转换才会真正运行。
之所以使用惰性求值/延迟执行,是因为这样可以在Action时对RDD操作形成DAG有向无环图进行Stage的划分和并行优化,这种设计让Spark更加有效率地运行。
5、RDD的持久化/缓存
在实际开发中某些RDD的计算或转换可能会比较好费时间,如果这些RDD后续还会频繁的被使用到,那么可以将这写RDD进行持久化/缓存,这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率
5.1、持久化/缓存API详解
●persist方法和cache方法
RDD通过persist或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
通过查看RDD的源码发现cache最终也是调用了persist无参方法(默认存储只存在内存中)
5.2、持久化存储级别
持久化级别 | 说明 |
---|---|
MEMORY_ONLY(默认) | 将RDD以非序列化的Java对象存储在JVM中。 如果没有足够的内存存储RDD,则某些分区将不会被缓存,每次需要时都会重新计算。 这是默认级别。 |
MEMORY_AND_DISK(开发中可以使用这个) | 将RDD以非序列化的Java对象存储在JVM中。如果数据在内存中放不下,则溢写到磁盘上.需要时则会从磁盘上读取 |
MEMORY_ONLY_SER (Java and Scala) | 将RDD以序列化的Java对象(每个分区一个字节数组)的方式存储.这通常比非序列化对象(deserialized objects)更具空间效率,特别是在使用快速序列化的情况下,但是这种方式读取数据会消耗更多的CPU。 |
MEMORY_AND_DISK_SER (Java and Scala) | 与MEMORY_ONLY_SER类似,但如果数据在内存中放不下,则溢写到磁盘上,而不是每次需要重新计算它们。 |
DISK_ONLY | 将RDD分区存储在磁盘上。 |
MEMORY_ONLY_2, MEMORY_AND_DISK_2等 | 与上面的储存级别相同,将持久化数据存为两份,备份每个分区存储在两个集群节点上。 |
OFF_HEAP(实验中) | 与MEMORY_ONLY_SER类似,但将数据存储在堆外内存中。 (即不是直接存储在JVM内存中) |
如:Tachyon-分布式内存存储系统、Alluxio - Open Source Memory Speed Virtual Distributed Storage |
5.3、总结
1.RDD持久化/缓存的目的是为了提高后续操作的速度
2.缓存的级别有很多,默认只存在内存中,开发中使用memory_and_disk
3.只有执行action操作的时候才会真正将RDD数据进行持久化/缓存
4.实际开发中如果某一个RDD后续会被频繁的使用,可以将该RDD进行持久化/缓存
6、第四章 RDD容错机制Checkpoint
●持久化的局限
持久化/缓存可以把数据放在内存中,虽然是快速的,但是也是最不可靠的;也可以把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏等。
●问题解决
Checkpoint的产生就是为了更加可靠的数据持久化,在Checkpoint的时候一般把数据放在在HDFS上,这就天然的借助了HDFS天生的高容错、高可靠来实现数据最大程度上的安全,实现了RDD的容错和高可用
6.1、总结
●开发中如何保证数据的安全性性及读取效率
可以对频繁使用且重要的数据,先做缓存/持久化,再做checkpint操作
●持久化和Checkpoint的区别
1.位置
Persist 和 Cache 只能保存在本地的磁盘和内存中(或者堆外内存–实验中)
Checkpoint 可以保存数据到 HDFS 这类可靠的存储上
2.生命周期
Cache和Persist的RDD会在程序结束后会被清除或者手动调用unpersist方法
Checkpoint的RDD在程序结束后依然存在,不会被删除
3.Lineage(血统、依赖链–其实就是依赖关系)
Persist和Cache,不会丢掉RDD间的依赖链/依赖关系,因为这种缓存是不可靠的,如果出现了一些错误(例如 Executor 宕机),需要通过回溯依赖链重新计算出来
Checkpoint会斩断依赖链,因为Checkpoint会把结果保存在HDFS这类存储中,更加的安全可靠,一般不需要回溯依赖链
●补充:Lineage
RDD的Lineage(血统、依赖链)会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
在进行故障恢复时,Spark会对读取Checkpoint的开销和重新计算RDD分区的开销进行比较,从而自动选择最优的恢复策略。
7、RDD的依赖关系
窄依赖:
一个RDD的分区至多被子RDD的某个分区使用一次
容错:某个分区出故障了,可以快速将丢失的分区并行计算出来,窄依赖可以在单节点上完成运算。
容错和计算速度都比宽依赖好。
宽依赖:
一个父RDD的分区会被子RDD的分区使用多次,即只能前面的算好后才进能进行后续的计算,只有遇到RDD数据是key-value才会有Partitioner
等到父类的所有数据都被传输到各个节点后才能计算(MR-shuffle)
容错:
某个分区出故障了,要计算前面所有父分区,代价会很大。解决办法:把之前的结果存在磁盘,当分区
出现故障,直接读磁盘文件。
好了,以上内容就到这里了。不知道小编本篇内容有没有帮助到你呢。欢迎路过的朋友关注小编哦。各位朋友关注点赞是小编坚持下去的动力。小编会继续为大家分享更多的知识哦~~~。
我是小哪吒,一名互联网行业的工具人。小编的座右铭:“我不生产代码,我只做代码的搬运工”…哈哈哈,我们下期见哦,Bye~
停下休息的时候,不要忘记别人还在奔跑。 |