63. Unique Paths II 等题

62. Unique Paths

原题:
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?
这里写图片描述

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

题解:
在坐标为(i,j)的格子上,有两种选择,向左或向下走:
如果向左走,则到(i,j-1)位置,就有该位置的x种走法到终点;
如果向下走,则到(i-1,j)位置,有该位置的y种走法。

所以用f(x,y)表示从(x,y)到终点有几种走法,有:

f(x,y) = f(x-1,y) + f(x,y-1)

所以从f(1,1)开始递推,先处理边界处(全部为1,走直线),再递推到终点,就得到答案了。

代码:

class Solution {
public:
    int uniquePaths(int m, int n) {
        if(!(m&&n)) {
            return 0;
        }
        vector<vector<int>> f(m+1, vector<int>(n+1));

        f[1][1] = 0;
        for(int i=1; i<=m; ++i) {
            f[i][1] = 1;
        }

        for(int i=1; i<=n; ++i) {
            f[1][i] = 1;
        }

        for(int i=2; i<=m; ++i) {
            for(int j=2; j<=n; ++j) {
                f[i][j] = f[i-1][j] + f[i][j-1];
            }
        }

        // for(int i=0; i<=m; ++i) {
        //     for(int j=0; j<=n; ++j) {
        //         cout << f[i][j] << " ";
        //     }
        //     cout << endl;
        // }

        return f[m][n];
    }
};

63. Unique Paths II

原题:
Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

题解:
和上一题要求相同,不过这次地图上出现“障碍物”。注意到两点:
1. 在递推的过程中,如果当前位置是障碍物,那么就有0种方式走。
2. 从起点到终点的路径数,和从终点到起点的数量相同。

因此,用上一题的递推思路,特殊处理边界(与上一个点的路径数相同,0或1),再从f(2,2)开始递推到终点。

代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& G) {
        int m=G.size();
        if(!m) return 0;
        int n=G[0].size();
        if(!n) return 0;

        vector<vector<int>> f(m+1, vector<int>(n+1));

        f[1][1] = !G[0][0];

        for(int i=2; i<=m; ++i) {
            f[i][1] = f[i-1][1] & !G[i-1][0];
        }

        for(int i=2; i<=n; ++i) {
            f[1][i] = f[1][i-1] & !G[0][i-1];
        }

        for(int i=2; i<=m; ++i) {
            for(int j=2; j<=n; ++j) {
                f[i][j] = G[i-1][j-1]? 0: f[i-1][j] + f[i][j-1];
            }
        }

        // for(int i=0; i<=m; ++i) {
        //     for(int j=0; j<=n; ++j) {
        //         cout << f[i][j] << " ";
        //     }
        //     cout << endl;
        // }

        return f[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值