62. Unique Paths
原题:
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题解:
在坐标为(i,j)的格子上,有两种选择,向左或向下走:
如果向左走,则到(i,j-1)位置,就有该位置的x种走法到终点;
如果向下走,则到(i-1,j)位置,有该位置的y种走法。
所以用f(x,y)
表示从(x,y)到终点有几种走法,有:
f(x,y) = f(x-1,y) + f(x,y-1)
所以从f(1,1)开始递推,先处理边界处(全部为1,走直线),再递推到终点,就得到答案了。
代码:
class Solution {
public:
int uniquePaths(int m, int n) {
if(!(m&&n)) {
return 0;
}
vector<vector<int>> f(m+1, vector<int>(n+1));
f[1][1] = 0;
for(int i=1; i<=m; ++i) {
f[i][1] = 1;
}
for(int i=1; i<=n; ++i) {
f[1][i] = 1;
}
for(int i=2; i<=m; ++i) {
for(int j=2; j<=n; ++j) {
f[i][j] = f[i-1][j] + f[i][j-1];
}
}
// for(int i=0; i<=m; ++i) {
// for(int j=0; j<=n; ++j) {
// cout << f[i][j] << " ";
// }
// cout << endl;
// }
return f[m][n];
}
};
63. Unique Paths II
原题:
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
题解:
和上一题要求相同,不过这次地图上出现“障碍物”。注意到两点:
1. 在递推的过程中,如果当前位置是障碍物,那么就有0种方式走。
2. 从起点到终点的路径数,和从终点到起点的数量相同。
因此,用上一题的递推思路,特殊处理边界(与上一个点的路径数相同,0或1),再从f(2,2)开始递推到终点。
代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& G) {
int m=G.size();
if(!m) return 0;
int n=G[0].size();
if(!n) return 0;
vector<vector<int>> f(m+1, vector<int>(n+1));
f[1][1] = !G[0][0];
for(int i=2; i<=m; ++i) {
f[i][1] = f[i-1][1] & !G[i-1][0];
}
for(int i=2; i<=n; ++i) {
f[1][i] = f[1][i-1] & !G[0][i-1];
}
for(int i=2; i<=m; ++i) {
for(int j=2; j<=n; ++j) {
f[i][j] = G[i-1][j-1]? 0: f[i-1][j] + f[i][j-1];
}
}
// for(int i=0; i<=m; ++i) {
// for(int j=0; j<=n; ++j) {
// cout << f[i][j] << " ";
// }
// cout << endl;
// }
return f[m][n];
}
};