深度学习小总结

卷积神经网络基础

互相关运算与卷积运算

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素 x 的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做 x 的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为 2×2 的输出记为 Y ,将 Y 与另一个形状为 2×2 的核数组做互相关运算,输出单个元素 z 。那么, z 在 Y 上的感受野包括 Y 的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

填充和步幅
我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。

填充
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。

如果原输入的高和宽是 nh 和 nw ,卷积核的高和宽是 kh 和 kw ,在高的两侧一共填充 ph 行,在宽的两侧一共填充 pw 列,则输出形状为:

(nh+ph−kh+1)×(nw+pw−kw+1)

我们在卷积神经网络中使用奇数高宽的核,比如 3×3 , 5×5 的卷积核,对于高度(或宽度)为大小为 2k+1 的核,令步幅为1,在高(或宽)两侧选择大小为 k 的填充,便可保持输入与输出尺寸相同。

步幅
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。

一般来说,当高上步幅为 sh ,宽上步幅为 sw 时,输出形状为:

⌊(nh+ph−kh+sh)/sh⌋×⌊(nw+pw−kw+sw)/sw⌋

如果 ph=kh−1 , pw=kw−1 ,那么输出形状将简化为 ⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋ 。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是 (nh/sh)×(nw/sw) 。

当 ph=pw=p 时,我们称填充为 p ;当 sh=sw=s 时,我们称步幅为 s 。

多输入通道和多输出通道
之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是 h 和 w (像素),那么它可以表示为一个 3×h×w 的多维数组,我们将大小为3的这一维称为通道(channel)维。

多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。

假设输入数据的通道数为 ci ,卷积核形状为 kh×kw ,我们为每个输入通道各分配一个形状为 kh×kw 的核数组,将 ci 个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把 ci 个核数组在通道维上连结,即得到一个形状为 ci×kh×kw 的卷积核。

多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为 ci 和 co ,高和宽分别为 kh 和 kw 。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为 ci×kh×kw 的核数组,将它们在输出通道维上连结,卷积核的形状即 co×ci×kh×kw 。

对于输出通道的卷积核,我们提供这样一种理解,一个 ci×kh×kw 的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的 ci×kh×kw 的核数组,不同的核数组提取的是不同的特征。

1x1卷积层
最后讨论形状为 1×1 的卷积核,我们通常称这样的卷积运算为 1×1 卷积,称包含这种卷积核的卷积层为 1×1 卷积层。图5展示了使用输入通道数为3、输出通道数为2的 1×1 卷积核的互相关计算。

1×1 卷积核可在不改变高宽的情况下,调整通道数。 1×1 卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么 1×1 卷积层的作用与全连接层等价。

卷积层与全连接层的对比
二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为 (ci,co,h,w) 的卷积核的参数量是 ci×co×h×w ,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是 (c1,h1,w1) 和 (c2,h2,w2) ,如果要用全连接层进行连接,参数数量就是 c1×c2×h1×w1×h2×w2 。使用卷积层可以以较少的参数数量来处理更大的图像。

vgg 学习

通过增加相同的block来进行
其中block中为什么进行多次相同的卷积呢
原因如下:
我们先看看小卷积和大卷积的区别:
3×3的小卷积为了与5×5的大卷积有相同大小的输出和感受野,所以2个3×3的卷积才能代替1个5×5的卷积,怎么理解呢?
假设图像大小为n×n,5×5卷积核输出图像大小为(n-5+1)/1=n-4
第一次3×3卷积核输出图像大小为(n-3+1)/1=n-2,第二次(n-2-3+1)/2=n-4
同理三个3×3的卷积才能代替一个7×7的卷积,以此类推。 但是在相同的输出和感受野下,3×3的小卷积有更多的好处:
1 . 网络层数增加,非线性激活函数变多,增加了非线性表达能力,使得分割平面更具有可分性
2 . 参数变少,两个3×3和一个5×5的参数比例为3×3×2/(5×5)=0.72,同样三个3×3×3/(7×7)=0.52,参数大大减少
3 . 能捕捉到各个方向的最小尺寸

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值