贪心
题目描述:给定一串数,要求把数按照给定的交换规则排成升序。交换规则:选定偶数个数把这些数的前半部分和后半部分交换,各半部分中的数不变。求交换的次数和每次交换数字序列的首端点和尾端点。
题目分析:按照选择排序法的思想,将数字i放在第i的位置,前面排好的数字就不用管了。如果数字i不在第i的位置,就进行交换。刘汝佳给的提示:2n次操作就好了,说明每位上的数最多经过两次交换可以满足i在第i的位置上。设第i位置上的数字为a,数字i在位置loc[i],假定loc[i]>i,将i到loc[i]的数字序列和loc[i]到loc[i]+loc[i]-i-1(与前面等长的序列)交换即可将loc位置上的数字i换到第i的位置。这个交换得满足loc[i]+loc[i]-i-1(等价于i+2*(loc[i]-i)-1)<n,如果不满足的话需要将数字i往前移动,具体移动多少呢,只需要将loc[i]上数字i移动到还需要处理的数字序列长度的前半部分即可。意思就是如果数字总长度是10,1、2、3、4已经排好了,如果5在位置9上,只需要将5移动到4+(10-4)/2之间即可,这样就可以满足i+2*(loc[i]-i)-1<n了,再按照上面的方法交换。具体移动时要考虑要移动偶数个数,所以如果(loc[i]-i+1)%2==0,移动i到loc[i],为奇数的话移动i+1到loc[i].
代码如下:
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int maxn=10000+10;
int cates[maxn],loc[maxn],n;
vector<pair<int,int> > exchange;
void num_swap(int left,int right)
{
exchange.push_back(make_pair(left,right));
int len=(right-left+1)/2;
for(int i=0;i<len;i++)
{
swap(loc[cates[left+i]],loc[cates[left+i+len]]);
swap(cates[left+i],cates[left+i+len]);
}
}
void solve()
{
exchange.clear();
for(int i=1;i<n;i++)
{
if(loc[i]!=i)
{
if(i+2*(loc[i]-i)-1>n)
{
int len=loc[i]-i+1;
if(len%2==0)
{
num_swap(i,loc[i]);
}
else
{
num_swap(i+1,loc[i]);
}
}
num_swap(i,i+2*(loc[i]-i)-1);
}
}
cout << exchange.size() << endl;
for(int i=0;i<exchange.size();i++)
{
cout << exchange[i].first << " " << exchange[i].second << endl;
}
}
int main()
{
int kase;
cin >> kase;
while(kase--)
{
cin >> n;
for(int i=1;i<=n;i++)
{
scanf("%d",&cates[i]);
loc[cates[i]]=i;
}
solve();
}
return 0;
}
注意:上面用一个数组loc记录数字i所在的位置,这样就省下遍历来寻找数字i所在的位置的时间了。还有上面的交换函数,必须对记录位置的数组loc交换,再对数组cates交换,否则会错误。这个题其实需要考虑很多细节,如序列长度奇偶啊,区间+1还是-1啊等等,还要有良好的数学思维能力。我还太欠缺了。