R 线性模型 检验异常观测值

本文探讨了R语言中线性模型中的异常值分析,包括离群点、高杠杆值点和强影响点的识别。离群点通过Q-Q图和标准化残差值判断,高杠杆值点通过帽子统计量检测,强影响点则使用Cook's D和变量添加图。文章举例展示了如何使用car包中的函数进行检测,并提供了影响图以综合查看各种异常情况。
摘要由CSDN通过智能技术生成

一个全面的回归分析要覆盖对异常值的分析,包括离群点、高杠杆值点和强影响点。这些数 据点需要更深入的研究,因为它们在一定程度上与其他观测点不同,可能对结果产生较大的负面 影响。下面我们依次学习这些异常值。

8.4.1 离群点

离群点是指那些模型预测效果不佳的观测点。它们通常有很大的、或正或负的残差(Yi–Ŷi)。 正的残差说明模型低估了响应值,负的残差则说明高估了响应值。

你已经学习过一种鉴别离群点的方法:图8-9的Q-Q图,落在置信区间带外的点即可被认为是 离群点。另外一个粗糙的判断准则:标准化残差值大于2或者小于–2的点可能是离群点,需要特 别关注。

car包也提供了一种离群点的统计检验方法。outlierTest()函数可以求得最大标准化残差 绝对值Bonferroni调整后的p值

> library(car) 
 > outlierTest(fit) 
 rstudent unadjusted p-value Bonferonni p 
Nevada 3.5 0.00095 0.048 

此处,你可以看到Nevada被判定为离群点(p=0.048)。注意,该函数只是根据单个最大(或 正或负)残差值的显著性来判断是否有离群点。若不显著,则说明数据集中没有离群点;若显著, 则你必须删除该离群点࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值