R Z-score结果

Z-score(标准数)用于将数据标准化,便于比较不同量级的数据。在R中,可以使用内置函数进行计算。虽然Z-score转换不会影响PCA、相关性分析等统计学算法的结果,但对差异基因选择的影响则是个值得关注的问题。
摘要由CSDN通过智能技术生成

先了解什么是z-score

**Z值(z-score)**又称标准数,能够将不同量级的数据转化为相同量级,实现标准化。

其公式表示为:

μσ

其中:x为实际测量值,μ为平均数,σ为标准差。

Z-score后的值本身没有实际意义,仅使数据标准统一化。实测值>平均值,则z为正值,实测值<平均值,则z为负值。

在R中实现计算z-score

R语言中默认利用函数scale实现 z-score 的变换,scale函数共有两个参数centerscale,并且两个参数均默认为TURE。其中center = T表示数据中心化,scale = T为真表示数据标准化。

z-score前后数据变化

x <- matrix(runif(100, 5.0, 7.5),nrow = 20)
b <- scale(x)

par(mfrow = c(2,2))
plot(x)
plot(b)
boxplot(x)
boxplot(b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值