R中的Kolmogorov-Smirnov检验(带示例)

本文介绍了如何在R中使用ks.test()函数进行Kolmogorov-Smirnov检验,包括单样本检验和双样本检验。通过示例展示如何判断样本是否来自特定分布或两个样本是否来自同一分布,揭示了检验统计量和p值在决策中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kolmogorov-Smirnov 检验用于检验样本是否来自某个分布。

要在 R 中执行一个样本或两个样本的 Kolmogorov-Smirnov 检验,我们可以使用ks.test()函数。

本教程展示了如何在实践中使用此功能的示例。

示例 1:一个样本 Kolmogorov-Smirnov 检验
假设我们有以下样本数据:

data <- rpois(n=20, lambda=5)

以下代码显示了如何对这个包含 100 个数据值的样本执行 Kolmogorov-Smirnov 检验,以确定它是否来自正态分布:

在R语言中对500个样本的19种金属数据进行Kolmogorov-Smirnov检验(K-S检验),可以按照以下步骤进行: 1. **准备数据**:假设你的数据存储在一个数据框(data frame)中,每一列代表一种金属,每一行代表一个样本。 2. **安装并加载必要的包**:如果还没有安装`ggplot2`和`dplyr`包,可以使用以下命令安装: ```R install.packages("ggplot2") install.packages("dplyr") ``` 3. **加载包**: ```R library(ggplot2) library(dplyr) ``` 4. **进行K-S检验**:假设数据框名为`metal_data`,我们可以使用`lapply`函数对每一列进行K-S检验,并与标准正态分布进行比较。 ```R # 假设数据存储在metal_data数据框中 metal_data <- data.frame(matrix(rnorm(500*19), ncol=19)) # 生成示例数据 # 对每一列进行K-S检验 ks_results <- lapply(metal_data, function(x) { ks.test(x, "pnorm", mean=mean(x), sd=sd(x)) }) # 查看结果 ks_results ``` 5. **解释结果**:K-S检验的结果会返回一个列表,每个元素对应一种金属的检验结果。结果中包括统计量D和p值。通常情况下,p值小于0.05表示数据不符合正态分布。 ```R # 提取p值 p_values <- sapply(ks_results, function(x) x$p.value) # 查看p值 p_values ``` 6. **可视化结果**:可以使用柱状图来可视化每种金属的p值。 ```R # 创建数据框存储p值 p_values_df <- data.frame(Metal = names(p_values), P_Value = p_values) # 绘制柱状图 ggplot(p_values_df, aes(x = Metal, y = P_Value)) + geom_bar(stat = "identity", fill = "blue") + theme_minimal() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs(title = "Kolmogorov-Smirnov Test Results for Metals", y = "P-Value") ``` 通过以上步骤,你可以对500个样本的19种金属数据进行Kolmogorov-Smirnov检验,并查看每种金属是否符合正态分布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值