R语言样条平滑回归模型

本文介绍了R语言中使用三次样条函数进行曲线拟合的方法,通过`smooth.spline`函数实现样条平滑回归。该函数能够根据预设的光滑度或等效自由度(df)调整模型复杂度,以找到最佳的光滑参数λ。样条平滑不同于样条插值,前者不强制曲线穿过所有数据点,而`splines`函数则用于样条插值,确保插值曲线经过所有散点。此外,`approx`函数用于线性插值,产生连续函数在等间隔横坐标上的坐标值。
摘要由CSDN通过智能技术生成

为了得到一般性的Y与X的曲线关系的f(x) 估计, 可以使用样条函数。 三次样条函数将实数轴用若干个节点(knots) 分成几段, 每一段f(x) 上为三次多项式, 函数在节点处有连续的二阶导数。 样条函数是光滑的分段三次多项式。

在R中用smooth.spline函数进行样条曲线拟合。 取每个自变量处为一个节点, 对于给定的某个光滑度/模型复杂度系数值, 求函数使得


λ \lambda λ 越大, 所得的曲线越光滑。 smooth.spline()函数可以通过交叉验证方法自动取得一个对于预测最优的光滑参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值