平滑样条法
样条平滑是一种关于一般类的强大而灵活的建模技术,应用包括多项式,周期,球面,薄板,L-和部分样条,以及更高级模型的概述,包括平滑样条线ANOVA,扩展和广义平滑样条ANOVA,矢量样条,非参数非线性回归,半参数回归和半参数混合效应模型。
样条
样条是一种分段的低阶多项式逼近函数,可应用于具有不同非线性度或者存在多个极值点的函数。它包含两类:多项式样条和光滑样条。多项式样条可以解决很多问题,但是理论与实践都表明直接用最小二乘去求解系数效果不好,容易过拟合。一个可能的改进是光滑样条。所谓的光滑样条,就是在求解最小二乘时给估计函数( f(x) )加上了一定的惩罚,这个有点类似压缩估计。
光滑样条
R的splines包中提供了函数smooth.spline来求解光滑样条。
spline函数的功能:对给定数据点执行三次(或Hermite)样条插值,返回通过插值获得的点列表或执行插值的函数。
#help("spline")时列出所包含的函数
splinefun(x, y