单边t检验与双边t检验类似,但它只关注一边的分布。单边t检验通常用于测试一个方向的假设,即你想确定一个组的均值是大于或小于另一个组的均值。以下是如何手动计算单边t检验的统计量和p值的步骤,我将以单边t检验的右尾(均值大于另一个组)为例:
假设你仍然有两组数据,分别是组A和组B。你想要检验组A的均值是否大于组B的均值。
-
收集数据:
group_A <- c(23, 25, 28, 32, 27) group_B <- c(18, 20, 24, 21, 22)
-
计算每组的样本均值和样本标准差:
mean_A <- mean(group_A) sd_A <- sd(group_A) mean_B <- mean(group_B) sd_B <- sd(group_B)
-
计算两组数据的样本大小:
n_A <- length(group_A) n_B <- length(group_B)
-
计算t统计量(t-value):
nu