数组与矩阵 - 找出数组中重复的数,数组值在 [1, n] 之间

这篇博客探讨了如何解决LeetCode中的287题,即在一个有n+1个整数且有一个重复数字的数组中找到这个重复的数字。博主介绍了三种方法:HashSet、二分法和双指针法,详细阐述了每种方法的时间和空间复杂度。双指针法(Floyd判圈算法)在保持O(n)时间复杂度的同时,仅使用常量级空间,是最优解。
摘要由CSDN通过智能技术生成

1.题目

LeetCode: 287. 寻找重复数

【medium】

给定一个包含 n + 1 个整数的数组 nums ,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。

假设 nums 只有 一个重复的整数 ,找出 这个重复的数 。

示例 1:

输入:nums = [1,3,4,2,2]

输出:2

示例 2:

输入:nums = [3,1,3,4,2]

输出:3

示例 3:

输入:nums = [1,1]

输出:1

示例 4:

输入:nums = [1,1,2]

输出:1

提示:

  • 2 < = n < = 3 ∗ 1 0 4 2 <= n <= 3 * 10^4 2<=n<=3104
  • nums.length == n + 1
  • 1 <= nums[i] <= n
  • nums 中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次

进阶:

  • 如何证明 nums 中至少存在一个重复的数字?
  • 你可以在不修改数组 nums 的情况下解决这个问题吗?
  • 你可以只用常量级 O(1) 的额外空间解决这个问题吗?
  • 你可以设计一个时间复杂度小于 O(n2) 的解决方案吗?

2.解题

方法一:HashSet

将数组遍历存放至哈希表,如果放不进去则说明重复,返回其值。

java:

class Solution {
    public int findDuplicate(int[] nums) {
        Set<Integer> set = new HashSet<>();
        for (int num : nums) {
            if (!set.add(num)) return num;
        }
        return 0;
    }
}

时间复杂度:O(n)

空间复杂度:O(n)

方法二:二分法

由于题中数组范围是1~n,故可用二分法进行查找。定义两个变量分别指向最小和最大的数。然后取mid为中间值,遍历数组,计数<=mid的数有多少个,如果大于mid,则证明重复的数在左半边r = mid - 1,否则在右半边l = mid + 1。

java:

class Solution {
    public int findDuplicate(int[] nums) {
        int l = 1, r = nums.length - 1;
        while (l <= r) {
            int mid = l + (r - l) / 2;
            int count = 0;
            for (int i = 0; i < nums.length; i++) {
                if (nums[i] <= mid) count++;
            }
            if (count > mid) r = mid - 1;
            else l = mid + 1;
        }
        return l;
    }
}

时间复杂度:O(nlogn),二分查找最多需要二分O(logn) 次,每次判断的时候需要O(n) 遍历 nums 数组求解小于等于 mid 的数的个数,因此总时间复杂度为 O(nlogn)

空间复杂度:O(1)

*方法三:双指针

参考:「Floyd 判圈算法」

https://leetcode-cn.com/problems/find-the-duplicate-number/solution/xun-zhao-zhong-fu-shu-by-leetcode-solution/

java:

class Solution {
    public int findDuplicate(int[] nums) {
        int slow = nums[0], fast = nums[nums[0]];
        while (slow != fast) {
            slow = nums[slow];
            fast = nums[nums[fast]];
        }
        fast = 0;
        while (slow != fast) {
            slow = nums[slow];
            fast = nums[fast];
        }
        return slow;
    }
}

时间复杂度:O(n)

空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值