1.题目
LeetCode: 287. 寻找重复数
【medium】
给定一个包含 n + 1 个整数的数组 nums ,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。
假设 nums 只有 一个重复的整数 ,找出 这个重复的数 。
示例 1:
输入:nums = [1,3,4,2,2]
输出:2
示例 2:
输入:nums = [3,1,3,4,2]
输出:3
示例 3:
输入:nums = [1,1]
输出:1
示例 4:
输入:nums = [1,1,2]
输出:1
提示:
- 2 < = n < = 3 ∗ 1 0 4 2 <= n <= 3 * 10^4 2<=n<=3∗104
- nums.length == n + 1
- 1 <= nums[i] <= n
- nums 中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
进阶:
- 如何证明 nums 中至少存在一个重复的数字?
- 你可以在不修改数组 nums 的情况下解决这个问题吗?
- 你可以只用常量级 O(1) 的额外空间解决这个问题吗?
- 你可以设计一个时间复杂度小于 O(n2) 的解决方案吗?
2.解题
方法一:HashSet
将数组遍历存放至哈希表,如果放不进去则说明重复,返回其值。
java:
class Solution {
public int findDuplicate(int[] nums) {
Set<Integer> set = new HashSet<>();
for (int num : nums) {
if (!set.add(num)) return num;
}
return 0;
}
}
时间复杂度:O(n)
空间复杂度:O(n)
方法二:二分法
由于题中数组范围是1~n,故可用二分法进行查找。定义两个变量分别指向最小和最大的数。然后取mid为中间值,遍历数组,计数<=mid的数有多少个,如果大于mid,则证明重复的数在左半边r = mid - 1,否则在右半边l = mid + 1。
java:
class Solution {
public int findDuplicate(int[] nums) {
int l = 1, r = nums.length - 1;
while (l <= r) {
int mid = l + (r - l) / 2;
int count = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] <= mid) count++;
}
if (count > mid) r = mid - 1;
else l = mid + 1;
}
return l;
}
}
时间复杂度:O(nlogn),二分查找最多需要二分O(logn) 次,每次判断的时候需要O(n) 遍历 nums 数组求解小于等于 mid 的数的个数,因此总时间复杂度为 O(nlogn)
空间复杂度:O(1)
*方法三:双指针
参考:「Floyd 判圈算法」
https://leetcode-cn.com/problems/find-the-duplicate-number/solution/xun-zhao-zhong-fu-shu-by-leetcode-solution/
java:
class Solution {
public int findDuplicate(int[] nums) {
int slow = nums[0], fast = nums[nums[0]];
while (slow != fast) {
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = 0;
while (slow != fast) {
slow = nums[slow];
fast = nums[fast];
}
return slow;
}
}
时间复杂度:O(n)
空间复杂度:O(1)