论文阅读笔记——AVID:Adapting Video Diffusion Models to World Models

[2410.12822] AVID: Adapting Video Diffusion Models to World Models

解决的问题

在不改变原预训练模型参数的情况下,将不带 action 的预训练视频扩散模型改造为 world model。

Previous Method

arxiv.org/pdf/2306.01872 提出组合预训练模型和适配器模型来实现不改变原预训练模型参数下来适应特定应用场景
ϵ P o E ( X i , c ) = ϵ p r e ( X i , i , c ) + ϵ a d a p t ( X i , i , c ) \epsilon_{PoE}(X_i,c) =\epsilon_{pre}(X_i,i,c)+\epsilon_{adapt}(X_i,i,c) ϵPoE(Xi,c)=ϵpre(Xi,i,c)+ϵadapt(Xi,i,c)
但问题在于将二者简单的相加,可能会破坏原始的去噪假设,由此产生了 bias。

Method

在这里插入图片描述
AVID 并不试图去训练两个模型,而是使用预训练模型的输出去训练去噪损失的适配器。
适配器是一个 3D UNet,接受噪声视频、预训练模型的噪声预测和初始图像作为输入,生成一个掩码和适配器的噪声预测;掩码是通过 Sigmoid 函数限制在 [ 0 , 1 ] [0,1] [0,1] 之间,动态调整预训练模型和适配器输出的权重,取决于原去噪的哪些部分会被新的结果替代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值