1. 本地文件的读写
1.1 读文件
import org.apache.spark.sql.SparkSession
val inputPath = "file:///Users/zz/Desktop/aa.sh"
val rdd = spark.sparkContext.textFile(inputPath)
上面代码执行后,因为Spark的惰性机制,并不会真正执行,所以即使路径错误,此时也不会报错。
1.2 写文件
val outputPath = "/Users/zz/Desktop/output"
rdd.saveAsTextFile(outputPath)
// 再次加载
val rdd = spark.sparkContext.textFile(outputPath)
2. HDFS文件的读写
val inputPath = "hdfs://localhost:9000/user/zz/aa.sh"
val rdd = spark.sparkContext.textFile(inputPath)
val outputPath = "hdfs://localhost:9000/user/zz/output"
rdd.saveAsTextFile(outputPath)
3. JSON文件的读写
JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式。
aa.json
{"name": "aa"} {"name": "bb", "age":30}{"name": "cc", "age":18}
val inputPath = "/Users/zenmen/Desktop/aa.json"
val rdd = spark.sparkContext.textFile(inputPath)
rdd.foreach(println)
JSON数据解析
import scala.util.parsing.json.JSON
val inputPath = "/Users/zenmen/Desktop/aa.json"
val rdd = spark.sparkContext.textFile(inputPath)
val result = rdd.map(JSON.parseFull(_))
result.foreach({
r => r match {
case Some(map: Map[String, Any]) => println(map)
case None => println("Parsing Failed!!!")
case other => println("Unknown data structure: " + other)
}
})
输出
Map(name -> aa)
Map(name -> bb, age -> 30.0)
Map(name -> cc, age -> 18.0)
4. HBase 读写
4.1 HBase简介
HBase是google 对BigTable的开源实现,解决Google内部大规模网页搜索问题。
1. HBase是一个稀疏、多维度、排序的映射表,这张表的索引是行键、列族、列限定符和时间戳;
2. 每个值是一个未经解释的字符串,没有数据类型;
3. 用户在表中存储数据,每一行都有一个可排序的行键和任意多的列。
表:HBase采用表来组织数据,表由行和列组成,列划分为若干个列族。
行: 每个HBase表都有若干个行组成,每个行由 row key 来标志。
列族:1个HBase表被分成许多列族(Column Family)的集合,它是基本的访问控制单元。
列限定符:列族里的数据通过列限定符或列来定位。
时间戳:每个单元格都保存着同一份数据的多个版本,这些版本采用时间戳进行索引。
单元格:在HBase表中,通过行、列族和列限定符确定一个单元格cell,单元格中存储的数据没有数据类型,总被视为字节数据byte[]。
4.2 配置Spark
把HBase的lib目录下的一些jar文件拷贝到Spark中。
4.3 读HBase文件
表名: student, 列族:info
import org.apache.spark.sql.SparkSession
import org.apache.hadoop.conf.Configuration
//import org.apache.hadoop.hbase.HBaseConfiguration
//import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
object Test {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("wc")
.master("local")
.getOrCreate()
val conf = HBaseConfiguration.create()
// 设置查询的表名
conf.set(TableInputFormat.INPUT_TABLE, "student")
val stuRDD = spark.sparkContext.newAPIHadoopRDD(conf,
classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result]
)
val count = stuRDD.count()
print("Students RDD Count: " + count)
// 缓存一下,以免后面重复生成
stuRDD.cache()
stuRDD.foreach({
case(_,result) =>
val key = Bytes.toString(result.getRow)
val name = Bytes.toString(result.getValue("info".getBytes, "name".getBytes))
val gender = Bytes.toString(result.getValue("info".getBytes, "gender".getBytes))
val age = Bytes.toString(result.getValue("info".getBytes, "age".getBytes))
println("Row key: " + key + "Name: " + name
+ "Gender: "+ gender + "Age: " + age)
})
}
}
打包编译
在simple.sbt中写入下面内容,注意对应版本号!
采用sbt打包,submit提交运行
4.4 写HBase文件
import org.apache.spark.sql.SparkSession
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.Job
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapreduce.Job
object Test {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("wc")
.master("local")
.getOrCreate()
spark.sparkContext.hadoopConfiguration
.set(TableOutputFormat.OUTPUT_TABLE, "student")
val job = new Job(spark.sparkContext.hadoopConfiguration)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[
TableOutputFormat[ImmutableBytesWritable]])
// 构造两条数据
val arr = Array("3,cc,M,26", "4,dd,W,30")
val initRDD = spark.sparkContext.makeRDD(arr)
.map(_.split(","))
val rdd = initRDD
.map{ arr => {
val put = new Put(Bytes.toBytes(arr(0))) //行键
put.add(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(arr(1)))
put.add(Bytes.toBytes("info"), Bytes.toBytes("gender"), Bytes.toBytes(arr(2)))
put.add(Bytes.toBytes("info"), Bytes.toBytes("age"), Bytes.toBytes(arr(3).toInt))
(new ImmutableBytesWritable, put)
}}
rdd.saveAsNewAPIHadoopDataset(job.getConfiguration())
}
}
运行
查看结果