Spark数据读写--HDFS、HBase、Json

1. 本地文件的读写

1.1 读文件

import org.apache.spark.sql.SparkSession

val inputPath = "file:///Users/zz/Desktop/aa.sh"
val rdd = spark.sparkContext.textFile(inputPath)

上面代码执行后,因为Spark的惰性机制,并不会真正执行,所以即使路径错误,此时也不会报错。

1.2 写文件

val outputPath = "/Users/zz/Desktop/output"
rdd.saveAsTextFile(outputPath)
// 再次加载
val rdd = spark.sparkContext.textFile(outputPath)

 2. HDFS文件的读写

val inputPath = "hdfs://localhost:9000/user/zz/aa.sh"
val rdd = spark.sparkContext.textFile(inputPath)
val outputPath = "hdfs://localhost:9000/user/zz/output"
rdd.saveAsTextFile(outputPath)

 3. JSON文件的读写

JSON (JavaScript Object Notation) 是一种轻量级的数据交换格式。

aa.json

{"name": "aa"} {"name": "bb", "age":30}{"name": "cc", "age":18}

val inputPath = "/Users/zenmen/Desktop/aa.json"
val rdd = spark.sparkContext.textFile(inputPath)
rdd.foreach(println)

JSON数据解析

import scala.util.parsing.json.JSON

val inputPath = "/Users/zenmen/Desktop/aa.json"
val rdd = spark.sparkContext.textFile(inputPath)
val result = rdd.map(JSON.parseFull(_))

result.foreach({
  r => r match {
    case Some(map: Map[String, Any]) => println(map)
    case None => println("Parsing Failed!!!")
    case other => println("Unknown data structure: " + other)
  }
})

输出

Map(name -> aa)
Map(name -> bb, age -> 30.0)
Map(name -> cc, age -> 18.0)

4. HBase 读写

4.1 HBase简介

HBase是google 对BigTable的开源实现,解决Google内部大规模网页搜索问题。

1. HBase是一个稀疏、多维度、排序的映射表,这张表的索引是行键、列族、列限定符和时间戳

2. 每个值是一个未经解释的字符串,没有数据类型;

3. 用户在表中存储数据,每一行都有一个可排序的行键和任意多的列。

表:HBase采用表来组织数据,表由行和列组成,列划分为若干个列族。

行: 每个HBase表都有若干个行组成,每个行由 row key 来标志。

列族:1个HBase表被分成许多列族(Column Family)的集合,它是基本的访问控制单元。

列限定符:列族里的数据通过列限定符或列来定位。

时间戳:每个单元格都保存着同一份数据的多个版本,这些版本采用时间戳进行索引。

单元格:在HBase表中,通过行、列族和列限定符确定一个单元格cell,单元格中存储的数据没有数据类型,总被视为字节数据byte[]。

 

4.2 配置Spark

把HBase的lib目录下的一些jar文件拷贝到Spark中。

 4.3 读HBase文件

表名: student, 列族:info

import org.apache.spark.sql.SparkSession
import org.apache.hadoop.conf.Configuration
//import org.apache.hadoop.hbase.HBaseConfiguration
//import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.io.ImmutableBytesWritable

object Test {
    def main(args: Array[String]): Unit = {
        val spark = SparkSession
          .builder()
          .appName("wc")
          .master("local")
          .getOrCreate()

        val conf = HBaseConfiguration.create()
        // 设置查询的表名
        conf.set(TableInputFormat.INPUT_TABLE, "student")
        val stuRDD = spark.sparkContext.newAPIHadoopRDD(conf,
            classOf[TableInputFormat],
            classOf[ImmutableBytesWritable],
            classOf[Result]
        )
        val count = stuRDD.count()
        print("Students RDD Count: " + count)
        // 缓存一下,以免后面重复生成
        stuRDD.cache()
        stuRDD.foreach({
            case(_,result) =>
                val key =  Bytes.toString(result.getRow)
                val name =  Bytes.toString(result.getValue("info".getBytes, "name".getBytes))
                val gender =  Bytes.toString(result.getValue("info".getBytes, "gender".getBytes))
                val age =  Bytes.toString(result.getValue("info".getBytes, "age".getBytes))
            println("Row key: " + key + "Name: " + name
              + "Gender: "+ gender + "Age: " + age)
        })
    }
}

 打包编译

在simple.sbt中写入下面内容,注意对应版本号!

 采用sbt打包,submit提交运行

4.4 写HBase文件

import org.apache.spark.sql.SparkSession
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.Job
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapreduce.Job

object Test {
    def main(args: Array[String]): Unit = {
        val spark = SparkSession
          .builder()
          .appName("wc")
          .master("local")
          .getOrCreate()

        spark.sparkContext.hadoopConfiguration
          .set(TableOutputFormat.OUTPUT_TABLE, "student")
        val job = new Job(spark.sparkContext.hadoopConfiguration)
        job.setOutputKeyClass(classOf[ImmutableBytesWritable])
        job.setOutputValueClass(classOf[Result])
        job.setOutputFormatClass(classOf[
          TableOutputFormat[ImmutableBytesWritable]])
        // 构造两条数据
        val arr = Array("3,cc,M,26", "4,dd,W,30")
        val initRDD = spark.sparkContext.makeRDD(arr)
          .map(_.split(","))
        val rdd = initRDD
          .map{ arr => {
              val put = new Put(Bytes.toBytes(arr(0))) //行键
              put.add(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(arr(1)))
              put.add(Bytes.toBytes("info"), Bytes.toBytes("gender"), Bytes.toBytes(arr(2)))
              put.add(Bytes.toBytes("info"), Bytes.toBytes("age"), Bytes.toBytes(arr(3).toInt))
              (new ImmutableBytesWritable, put)
          }}
        rdd.saveAsNewAPIHadoopDataset(job.getConfiguration())
    }
}

运行

 查看结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值