交通指示牌识别

这篇博客介绍了一个交通指示牌识别项目,主要涉及单分类和多分类问题,使用Python进行模型训练和评估。数据集包含5W多个样本,分为43个类别,重点识别四个类别。通过数据切分、加载、模型定义(包括两个模型)以及训练和验证流程,最终进行模型评估,包括混淆矩阵和单张图片预测。讨论了验证集准确度高于训练集的可能原因和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景说明

涉及单分类,多分类问题,共计5W多样本,43个类,以及一个标注文件(包括文件名、宽、高以及坐标)。其中每类图片数量不均等,图片尺寸也不尽相同。

数据源:German Traffic Sign Benchmarks

下载训练与测试数据目录如下:

这里只识别“STOP”、“禁止通行”、“直行”、“环岛行驶”四个类别。对应训练目录下的类别文件夹分别为00014, 00017, 00035, 00040。

2. 数据集切分

1. 将Final_training 目录按7:2:1切分为训练集、验证集、测试集三个文件夹,每个文件夹又分为“STOP”、“禁止通行”、“直行”、“环岛行驶”四个子目录。

11

import shutil
from pathlib import Path
from glob import glob
import numpy as np

def split_train_val_test_dataset(data_dir, data_sets, class_names, class_indices, train_folder):
    # 1. 创建对应目录
    for dt in data_sets:
        for cls in class_names:
            # exist_ok=True时,在目录已存在的情况下,不会触发FileExistsError异常
            (data_dir/dt/cls).mkdir(parents=True, exist_ok=True)

    # 2. 将原始数据集进行切分,并拷贝图片到目标文件夹
    for i, cls_index in enumerate(class_indices):
        img_paths = np.array(glob(f'{train_folder[int(cls_index)]}/*.ppm'))
        class_name = class_names[i]  # 标签
        print(f'{class_name}: {len(img_paths)}')
        np.random.shuffle(img_paths)   # 打乱图片路径
        # 对img_paths进行切分,本质上是索引切分,indices_or_sections定义切分点(0.7和0.9)
        ds_split = np.split(
            img_paths,
            indices_or_sections=[int(0.7*len(img_paths)), int(0.9*len(img_paths))]
        )
        dataset = zip(data_sets, ds_split)  # 拼接

        for dt, img_paths in dataset:
            print(f'\t{dt}, {len(img_paths)}')
            for path in img_paths:
                shutil.copy(path, f'{data_dir}/{dt}/{class_name}/')

2. 调用


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值