W&D实践应用

本文详细介绍了Wide&Deep模型在推荐场景的应用,包括模型概述、Wide部分的线性模型记忆、Deep部分的神经网络泛化、联合训练的策略。实践中,样本构建注重正负样本平衡,特征工程涉及用户和房源特征、交叉特征处理,模型离线训练与线上化过程优化了模型效果,线上测试显示CTR和CVR有显著提升。
摘要由CSDN通过智能技术生成

参考:wide&deep 在贝壳推荐场景的实践

Wide&Deep模型的八个实战细节

本文为“wide & deep 模型在贝壳首页二手房推荐场景中的实践”阅读笔记。

        无论在哪个推荐领域,推荐系统面临的一个共同挑战是如何同时满足推荐结果的准确性和多样性。准确性要求推荐的内容与用户高度相关,推的精准;多样性则要求推荐内容更加新颖,让用户具有新鲜感。设计合理的推荐策略,兼顾内容准确性和多样性,提升线上推荐效果,一直是我们算法同学的工作重点。

1. wide & deep 模型概述

1.1 概述

        目前W&D模型已经开源,并且在TensorFlow上提供了高级API。文中设计了一种融合浅层模型(wide)和深层模型(deep)进行联合训练的框架,综合利用浅层模型的记忆能力和深层模型的泛化能力,实现单模型对推荐系统准确性和多样性的兼顾。

        W&D模型包括wide模型(一个广义线性模型)和deep模型(一个前馈神经网络)。其思想来源是,模仿人脑有不断记忆并且泛化的过程,将线性模型(用于记忆)和深度神经网络模型(用于泛化)相结合,汲取各自优势,使得训练得到的模型能够同时兼顾记忆与泛化能力,从而达到整体效果的最优。

  • Memorization:模型能够从历史数据中学习到高频共现的特征组合,发掘特征之间的相关性,通过特征交叉产生特征相互作用的“记忆”,高效可解释。但要泛化,则需要更多的特征工程。

  • Generalization:代表模型能够利用相关性的传递性去探索历史数据中从未出现过的特征组合,通过embedding的方法,使用低维稠密特征输入,可以更好的泛化训练样本中从未出现的交叉特征。

1.2 Wide部分

        wide就是LR线性模型,主要用作学习样本中特征的共现性,达到 “记忆” 的目的。特征集合包括原始特征和转换后的特征,其中交叉特征在wide部分十分重要,能够捕捉到特征间的交互,因此通常会对稀疏的特征进行交叉特征转换。通过特征之间的交叉变换,便捕获了二元特征之间的相关性,为广义线性模型增加了非线性。

1.3 Deep部分

        deep是一个前馈神经网络,其输入通常是一些稠密的连续特征,对于一些高维的稀疏特征(id类等特征),首先会转换成低维且稠密的向量,也就是embeding vector,然后将这些特征拼接成一个大的稠密矩阵,再喂入第一层,在训练过程中通过优化损失函数不断迭代更新。

1.4 联合训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值