1. 背景
卷积神经网络CNN(Convolutional Neural Network,又称ConvNet)保留了空间信息,因此可以更好地用于图像分类。
卷积操作基于仔细甄选的局部感受野,在多个特征平面共享权值;之后全连接层基于传统的多层感知机,使用softmax作为输出层。
卷积网络的创新:保留空间信息、加入卷积、池化和特征平面。
CNN的共同之处是: 先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。
残差网络
残差块通过跨层的数据通道从而能够训练出有效的深度NN;
2. 网络组成
2.1 局部感受野
卷积:把相邻输入神经元的子矩阵与下一层的单个隐藏神经元连接,这个隐藏的单个神经元就代表一个局部感受野。
卷积层可通过重复使用卷积核有效地表征局部空间。在DL中,核数组都是学习出来的。可以设计卷积核来检测图像中的边缘。卷积层块的基本单位是卷积层后接最大池化层: 卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。
CN