深度卷积神经网络DCNN简介

1. 背景

        卷积神经网络CNN(Convolutional Neural Network,又称ConvNet)保留了空间信息,因此可以更好地用于图像分类。

        卷积操作基于仔细甄选的局部感受野,在多个特征平面共享权值;之后全连接层基于传统的多层感知机,使用softmax作为输出层。

        卷积网络的创新:保留空间信息、加入卷积、池化和特征平面

CNN的共同之处是: 先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。

残差网络

残差块通过跨层的数据通道从而能够训练出有效的深度NN;

2. 网络组成

2.1 局部感受野

卷积:把相邻输入神经元的子矩阵与下一层的单个隐藏神经元连接,这个隐藏的单个神经元就代表一个局部感受野。

        卷积层可通过重复使用卷积核有效地表征局部空间。在DL中,核数组都是学习出来的。可以设计卷积核来检测图像中的边缘。卷积层块的基本单位是卷积层后接最大池化层: 卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。

        CN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值