循环神经网络RNN及其变体LSTM、GRU

1. 背景

RNN(Recurrent Neural Networks)

CNN利用输入中的空间几何结构信息;RNN利用输入数据的序列化特性。

2. SimpleRNN单元

        传统多层感知机网络假设所有的输入数据之间相互独立,但这对于序列化数据是不成立的。RNN单元用隐藏状态或记忆引入这种依赖,以保存当前的关键信息。任一时刻的隐藏状态值是前一时间步中隐藏状态值和当前时间步中输入值的函数 h_{t}=f(h_{t-1}, x_{t})

        在所有时间步上共享相同的权重向量(U、V、W),极大地减少了RNN网络需要学习的参数个数(即RNN的数量不随时间步的增加而增长)。其t时间步输出 y_{t}=softmax(Vh_{t})

h_{t}=tanh(Wh_{t-1}+Ux_{t})

        选择tanh作为激活函数,是因为它的二阶导数衰减到0非常缓慢,这保持了激活函数的线性域的斜度,并帮助防止梯度消失问题。

        N元语法是基于n-1阶马尔可夫链的概率语言模型,其中n权衡了计算复杂度和模型准确性。

        隐藏变量(隐藏状态)能够捕捉截止当前时间步的序列的历史信息。

3. 梯度消失与梯度爆炸

3.1 产生原因

         时延反向传播BPTT(Backpropagation Through Time):因为参数是所有时间步共享的,所以每个输出的梯度不只依赖当前的时间步,也依赖之前的时间步。

在正向传播中,网络在每个时间步产生预测,并将它与标签比较,来计算损失L(t);
在反向传播中,关于参数U、V和W的损失梯度在每个时间步上计算,并用梯度之和来更新参数。

        一个隐藏状态关于它前一个隐藏状态的梯度小于1,跨多个时间步反向传播后,梯度的乘积就会变得越来越小,这就导致了梯度消失问题的出现;反之,梯度比1大很多,会导致梯度爆炸。

3.2 影响

        (1)梯度消失的影响是:相距较远的时间步上的梯度对学习过程没有任何用处,因此RNN不能进行大范围依赖的学习。梯度消失问题在传统NN上也会发生,只是对于RNN网络可见性更高,因为RNN趋于拥有更多的层(时间步),而反向传播在这些层是必然发生的

        (2)梯度爆炸更容易被检测到,梯度会变得非常大以至于不再是数字,训练过程也将崩溃。

3.3 解决方案

(1)缓解梯度消失问题的方法:

1. W权重向量的适当初始化;
2. 使用ReLU替代tanh层;
3. 使用非监督方法与训练网络;
4. 使用LSTM或GRU架构。

(2)梯度爆炸问题可以通过在预定义的阈值上进行梯度裁剪(clip gradient)来控制。

4. LSTM长短期记忆网络

        LSTM(long short-term memory)机构被设计成处理梯度消失问题以及更高效的学习长期依赖。LSTM时间步t隐藏状态的转换(4个层:3个门(i,f,o)+内部隐藏状态g),如下图所示:

        遗忘门f 定义了上一时间步的记忆细胞 C_{t-1} 中的信息有多少传递到当前时间步;
        输入门i 定义了当前时间步的输入 x_{t} 通过候选记忆细胞 \tilde{C_{t}} 如何流入当前时间步的记忆细胞;
        输出门o 定义了当前状态的多少部分传递给下一层;

候选记忆细胞g或 \tilde{C_{t}}

        如果遗忘门一直近似1且输入门一直近似0,过去的记忆细胞将一直通过时间保存并传递至当前时间步,即捕捉长期依赖,从而应对梯度衰减问题

5. GRU门控循环单元网络

        RNN在实际应用中较难捕捉时间序列中时间步距离较大的依赖关系。而GRU通过可以学习的门来控制信息的流动,从而更好的捕捉时间序列中时间步距离较大的依赖关系。GRU是LSTM的一个变体,它保留了LSTM对梯度消失问题的抗力,但它内部结构更加简单,更新隐藏状态时需要的计算也更少,因此训练的更快。GRU单元的门如下:

        重置门r(reset gate)定义了如何把新的输入和上一记忆结合起来;控制了上一时间步的隐藏状态 h_{t-1} 如何流入当前时间步的候选隐藏状态 c,而 h_{t-1}可能包含了时间序列截止上一时间步的全部历史信息。因此,重置门可以用来丢弃与预测无关的历史信息。

        更新门z(update gate)定义了保留多少部分上一记忆;它可以控制隐藏状态 h_{t} 应该如何被包含当前时间步信息的候选隐藏状态c 所更新。

1. 重置门r有助于捕捉时间序列里的短期依赖关系,它决定了上一隐藏状态有多少信息进入到候选隐藏状态;
2. 更新门z有助于捕捉时间序列里的长期依赖关系,它决定了候选隐藏状态有多少信息进入到隐藏状态。

c为候选隐藏状态;
和LSTM不同,GRU没有持久化的单元状态。

        GRU和LSTM具有同样出色的性能,GRU训练起来更快并且需要较少的数据就可以泛化
但在数据充足的情况下,LSTM卓越的表示能力可能会产生更好的结果。

6. 双向RNN

        双向RNN是彼此互相堆叠的两个RNN,它们从相反的方向读取输入。每个时间步的输出将
基于两个RNN的隐藏状态。

        双向RNN通过增加从后往前传递信息的隐藏层来更灵活地处理这类信息(比如当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词)。

        双向RNN在每个时间步的隐藏状态同时取决于该时间步之前和之后的子序列(包括当前时间步的输入)。

7. 有状态RNN

        RNN可以是有状态的,它能在训练中维护跨批次的状态信息,即为当前批次的训练数据计算
的状态值,可以用作下一批次训练数据的初始隐藏状态。

优点:更小的网络或更少的训练时间;
缺点:需要负责使用反映数据周期性的批大小来训练网络,并在每个训练期后重置状态。

        另外,因为数据呈现的顺序与有状态网络相关,在网络训练期间数据不能被移动。

1. 需要选择一个反映数据周期性的批大小,因为有状态RNN会将本批数据和下一批排列对齐,所以选择合适的批大小会让网络学得更快。
2. 需要手动控制模型、循环训练模型至要求的轮数。每次迭代训练模型一轮,状态信息跨批次保留。每轮训练后,模型的状态需要手动重设。

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值