快速幂

快速幂

食用范围

O ( l o g k ) O(logk) O(logk) 的时间内求出 a k m o d    p a^k \mod{p} akmodp 的结果,其中 a , p , k ≤ 1 0 9 a,p,k\le 10^9 a,p,k109

核心思想

反复平方法,预处理出

a 2 0 m o d    p a^{2^0}\mod{p} a20modp

a 2 1 m o d    p a^{2^1}\mod{p} a21modp

a 2 2 m o d    p . . . . a^{2^2}\mod{p}.... a22modp....

a 2 l o g k m o d    p a^{2^{logk}}\mod{p} a2logkmodp

的结果( l o g k logk logk 个)然后组合出 a k → a^k\to ak 把它拆成若干个前面乘积的形式 → \to 使用二进制表示拆 k k k

Code

返回 a k m o d    p a^k\mod{p} akmodp 的值

ll qmi(ll a, ll k, ll p) {
	ll res = 1;
	while(k) {
		if(k & 1) res = res * a % p;
		k >>= 1;
		a = a * a % p;
	}
	return res;
}
快速幂求逆元

希望将除法变成乘法

如果 a ÷ b ≡ a × x ( m o d   m ) a\div b \equiv a\times x(mod \ m) a÷ba×x(mod m)

那么如果求出 x x x a ÷ b a\div b a÷b 就可以转化为 a × b − 1 a\times b^{-1} a×b1 的形式,避免了除法的复杂运算,并且把除法变成乘法还保证了结果是一个整数。

乘法逆元的定义

若整数 b b b m m m 互质,并且对于任意的整数 a a a,如果满足 b ∣ a b|a ba ,则存在一个整数 x x x,使得 a / b ≡ a ∗ x ( m o d m ) a/b≡a∗x(mod m) a/bax(modm) ,则称 x x x b b b 的模 m m m 乘法逆元,记为 b − 1 ( m o d   m ) b−1(mod \ m) b1(mod m)
b b b 存在乘法逆元的充要条件是 b b b 与模数 m m m 互质。当模数 m m m 为质数时, b m − 2 b^{m−2} bm2 即为 b b b 的乘法逆元。

通俗的解释:给定一个 b b b 找到一个 x x x 使得 b × x ≡ 1 ( m o d   m ) b\times x \equiv 1(mod \ m) b×x1(mod m)

于是,根据费马小定理,有, b p − 1 ≡ 1 ( m o d   p ) → b × b p − 2 ≡ 1 ( m o d   p ) → b p − 2 b^{p-1}\equiv 1(mod\ p)\to b\times b^{p-2}\equiv 1(mod\ p)\to b^{p-2} bp11(mod p)b×bp21(mod p)bp2 就是 b b b 的逆元

费马小定理:如果 p p p 是一个质数,而整数 a a a 不是 p p p 的倍数,则有,则有 a p − 1 ≡ 1 ( m o d   p ) a^{p-1}≡1(mod\ p) ap11(mod p)

无解的情况: b b b p p p 的倍数,此时,模数一定为 0,满足上述情况时,均可由费马小定理构造出一组解。

Code

给定 n n n a i , p i a_i,p_i ai,pi,其中 p i p_i pi 是质数,求 a i a_i ai p i p_i pi 的乘法逆元,若逆元不存在则输出impossible

注意:请返回在 0 ∼ p − 1 0\sim p-1 0p1 之间的逆元。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 7;
const int N = 1e6 + 7, M = N * 2;
const int inf = 0x3f3f3f3f;
const long long mod = 1e9 + 7;

ll qmi(ll a, ll k, ll p) {
	ll res = 1;
	while(k) {
		if(k & 1) res = res * a % p;
		k >>= 1;
		a = a * a % p;
	}
	return res;
}

int main() {
	int n;
	ll a, k, p;
	scanf("%d", &n);
	while(n--) {
		scanf("%lld%lld", &a, &p);

		ll res = qmi(a, p - 2, p);
		if(a % p) printf("%lld\n", res );//特判不存在的情况,注意p=2时是0次方,所以不能简单的用结果是否为0来判断 
		else printf("impossible\n");
	}
    
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值