题意:
给出不同字母组合的分数,然后又两个串,可以将其中短的串中间插入'-'使得和另外一个串等长,问如何搞才能使得组合的分数最大。
题解:
很经典的dp问题,时隔半年拿出做了一下,当时觉得这是最长公共子序列的变形,事实上着就是。。
其实最长公共子序列也是一类问题的子集,变换使得两个字符串相同的一类dp问题——编辑距离问题。
最长公共子序列也是其中的一种变形而已,编辑距离问题是一类挺有趣的用dp处理字符串的问题。这类问题并非真正去改变字符串,而是通过抽象的状态dp[i][j]表示处理到A串i位置,B串j位置对应的结果。好啦,不多说,找个时间把这类问题给总结下。
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<string>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#define B(x) (1<<(x))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned ui;
const int oo = 0x3f3f3f3f;
//const ll OO = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-9;
#define lson rt<<1
#define rson rt<<1|1
void cmax(int& a, int b){ if (b > a)a = b; }
void cmin(int& a, int b){ if (b < a)a = b; }
void cmax(ll& a, ll b){ if (b > a)a = b; }
void cmin(ll& a, ll b){ if (b < a)a = b; }
void cmax(double& a, double b){ if (a - b < eps) a = b; }
void cmin(double& a, double b){ if (b - a < eps) a = b; }
void add(int& a, int b, int mod){ a = (a + b) % mod; }
void add(ll& a, ll b, ll mod){ a = (a + b) % mod; }
const ll MOD = 1000000007;
const int maxn = 1100;
int dp[maxn][maxn];
int s[300][300];
char s1[maxn], s2[maxn];
char A[] = "ACGT-";
int a[5][5] = {
{ 5, -1, -2, -1, -3 },
{ -1, 5, -3, -2, -4 },
{ -2, -3, 5, -2, -2 },
{-1, -2, -2, 5, -1},
{ -3, -4, -2, -1, 0 }
};
void Init(){
for (int i = 0; i < 5; i++){
for (int j = 0; j < 5; j++)
s[A[i]][A[j]] = a[i][j];
}
}
int main(){
//freopen("E:\\read.txt", "r", stdin);
Init();
int T, n, m;
scanf("%d", &T);
while (T--){
scanf("%d%s%d%s", &n, s1, &m, s2);
dp[0][0] = 0;
for (int i = 1; i <= n; i++)dp[i][0] = dp[i - 1][0] + s[s1[i - 1]]['-'];
for (int i = 1; i <= m; i++)dp[0][i] = dp[0][i - 1] + s['-'][s2[i - 1]];
for (int i = 1; i <= n; i++){
for (int j = 1; j <= m; j++){
dp[i][j] = -oo;
cmax(dp[i][j], dp[i - 1][j - 1] + s[s1[i - 1]][s2[j - 1]]);
cmax(dp[i][j], dp[i - 1][j] + s[s1[i - 1]]['-']);
cmax(dp[i][j], dp[i][j - 1] + s['-'][s2[j - 1]]);
}
}
printf("%d\n", dp[n][m]);
}
return 0;
}
/*
2
1 A
4 GCTA
1 A
4 ATCG
*/