【随机过程-学习笔记】(1)--马尔科夫链的定义与转移概率与绝对概率

【随机过程-学习笔记】(1)–马尔科夫链的定义与转移概率与绝对概率

一、马尔科夫链

  1. 马尔科夫链的出现
    具有马氏性,是指今天与昨天有关,但与前天无关(广义理解)。 p ( x t ∣ x t − 1 , x t − 2 , . . . x t − n ) = p ( x t ∣ x t − 1 ) p(x_t|x_{t-1},x_{t-2},...x_{t-n})=p(x_t|x_{t-1}) p(xtxt1,xt2,...xtn)=p(xtxt1), x t x_t xt为今天, x t − 1 x_{t-1} xt1为昨天,因此, x t x_t xt只与昨天有关。
    t 0 t_0 t0时刻所在的样本空间( Ω \Omega Ω),在马尔科夫中被称为状态空间,并且 t 0 t_0 t0中的各样本点 X t 0 X_{t_0} Xt0是随机变量,可以随机选取、也可以连续选取;
    在这里插入图片描述
    然后, t 0 t_0 t0 t 1 t_1 t1之间,是时间空间,具体的时间间隔,可以随机选取、也可以连续选取;
    因此,具体的选取过程如下:
    ① 状态空间=>离散,时间空间=>离散,称为马氏科夫链;↓
    在这里插入图片描述
    ② 状态空间=>离散,时间空间=>连续,称为马尔科夫过程;↓
    在这里插入图片描述
    ③ 状态空间=>连续,时间空间=>离散,称为马尔科夫列;
    ④ 状态空间=>连续,时间空间=>连续,称为扩散过程。
  2. 马氏科夫链
    ① 马氏科夫链的解释
    任意取第 n + 1 {n+1} n+1步,如图:
    在这里插入图片描述
    那么两步之间的联系可以被表示为:
    在这里插入图片描述
    其中,时刻为 t n t_n tn t n + 1 t_{n+1} tn+1时,都取离散的随机变量,因此{ X n , n ∈ N X_n,n\in N Xn,nN}的过程被称为马尔科夫链,写法上,表示为
    在这里插入图片描述
    ② 转移与转移概率
    在这里插入图片描述
    而,转移概率,则被表示为:
    在这里插入图片描述
    若知道,如果发生 p ( x n + 1 ) p(x_{n+1}) p(xn+1)的前提是已经发生 p ( x n ) p(x_{n}) p(xn),因此从状态 i i i转移到状态 j j j,就需要有 p ( x n ) p(x_{n}) p(xn)为基础,同时还要考虑转移概率 p ( x i j ( n ) ) p(x_{ij}(n)) p(xij(n)),才能够得到 p ( x n + 1 ) p(x_{n+1}) p(xn+1)。进一步的,可以得出:
    在这里插入图片描述
    那么,状态转移概率 p ( x i j ( n ) ) p(x_{ij}(n)) p(xij(n))便理解为: n n n时刻由状态 i i i转移到状态 j j j
    ③ 相对概率与绝对概率
    需要注意,转移概率不是状态 i i i的概率,也不是状态 j j j的概率,反应出的是过程,是指走一步的动态
    而面对与时间无关(时齐)的情况下,即静止状态时,发生的概率,是指n时刻下取各个值的概率。因为静止时,各值是离散的,随机变量 X n X_n Xn的取值则包含若干的,例如包含1,2,3,共3个状态,那么这些状态的概率被表称为绝对概率,也是静止概率,表示为 π i ( n ) \pi _i(n) πi(n) n n n时刻 p ( X n = i ) p(X_n=i) p(Xn=i)
    在这里插入图片描述
    π n ( 1 ) \pi _n(1) πn(1) π n ( 2 ) \pi _n(2) πn(2) π n ( 3 ) \pi _n(3) πn(3)。指 n n n时刻包含的全部状态。
    在这里插入图片描述
    那么在静态下,由状态n到状态n+1,能够得出n+1状态下的转移概率矩阵。
    在这里插入图片描述

有时间参与时,需要加入 n n n,即绝对概率 P ( n ) P(n) P(n)。时齐时,没有 n n n的参与,为相对概率 P P P

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)是一种用于估计复杂概率分布的方法。它通过模拟马尔科夫链的转移过程来生成样本,并利用这些样本来估计概率分布的性质。下面是一个简单的Python代码示例,用于求解马尔科夫链蒙特卡洛的转移概率: ```python import numpy as np def markov_chain_monte_carlo(transition_matrix, initial_state, num_steps): num_states = len(transition_matrix) current_state = initial_state states = [current_state] for _ in range(num_steps): current_state = np.random.choice(range(num_states), p=transition_matrix[current_state]) states.append(current_state) return states # 定义转移概率矩阵 transition_matrix = np.array([[0.2, 0.8], [0.6, 0.4]]) # 定义初始状态 initial_state = 0 # 模拟100个步骤的马尔科夫链 num_steps = 100 states = markov_chain_monte_carlo(transition_matrix, initial_state, num_steps) # 打印转移概率 transition_counts = np.zeros_like(transition_matrix) for i in range(len(states) - 1): current_state = states[i] next_state = states[i + 1] transition_counts[current_state][next_state] += 1 transition_probabilities = transition_counts / np.sum(transition_counts, axis=1, keepdims=True) print("转移概率矩阵:") print(transition_probabilities) ``` 这段代码中,`transition_matrix`表示马尔科夫链转移概率矩阵,`initial_state`表示初始状态,`num_steps`表示模拟的步骤数。`markov_chain_monte_carlo`函数模拟了马尔科夫链的转移过程,并返回每个步骤的状态。最后,根据模拟得到的状态序,计算转移概率矩阵并打印出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

spongia丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值