题目链接:右转进入题目
这个题有一部非常好的转化。
首先一眼看出这是一个带权最大独立团的问题。
所以想到网络流
但是网络流里面学的带权最大独立团问题必须要求是二分图啊怎么办!
我承认我没有想到怎么二分QwQ真是太弱辣!
发现两个奇数不满足a^2+b^2=c^2的条件(需要一点数学知识),两个偶数不满足gcd(a,b)=1的条件。
所以分别把奇数和偶数看作两排点即可。
如果两个不能同时选取,就连上inf的边。
s和奇数,偶数和t之间连边边权为数的权值。
所有数字的权值之和 - 最小割就是答案。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<queue>
#include<climits>
#define INF INT_MAX
#define MAXN 3010
#define MAXM 5000000
using namespace std;
struct edges{
int to,pre,resf;
}e[MAXM];int etop,a[MAXN],b[MAXN];
int h[MAXN],cur[MAXN],lev[MAXN];
bool vis[MAXN];queue<int> q;
bool bfs(int s,int t)
{
memset(vis,false,sizeof(vis));
memset(lev,0,sizeof(lev));
while(!q.empty()) q.pop();
q.push(s);lev[s]=0;vis[s]=true;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=h[x];i;i=e[i].pre)
if(!vis[e[i].to]&&e[i].resf)
{
vis[e[i].to]=true;
lev[e[i].to]=lev[x]+1;
q.push(e[i].to);
}
}
return vis[t];
}
int dfs(int s,int t,int a)
{
if(s==t||!a) return a;
int flow=0,f;
for(int &i=cur[s];i;i=e[i].pre)
if(lev[e[i].to]==lev[s]+1&&(f=dfs(e[i].to,t,min(a,e[i].resf)))>0)
{
flow+=f;a-=f;e[i].resf-=f;
e[((i-1)^1)+1].resf+=f;
if(!a) break;
}
return flow;
}
int add_edge(int u,int v,int c)
{
etop++;
e[etop].to=v;
e[etop].pre=h[u];
h[u]=etop;
e[etop].resf=c;
return 0;
}
int gcd(int a,int b)
{
return a?gcd(b%a,a):b;
}
bool check(int a,int b)
{
int c=sqrt(a*a+b*b+0.5);
return (c*c==a*a+b*b)&&(gcd(a,b)==1);
}
int main()
{
int n,n1,n2,totans=0;scanf("%d",&n);
int s,t,cnt;s=0,t=n+1,n1=0,n2=n+1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) totans+=a[i];
for(int i=1;i<=n;i++)
if(a[i]&1) b[++n1]=a[i];
else b[--n2]=a[i];
for(int i=1;i<=n1;i++)
for(int j=n1+1;j<=n;j++)
if(check(b[i],b[j]))
add_edge(i,j,INF),add_edge(j,i,0);
for(int i=1;i<=n1;i++)
add_edge(s,i,b[i]),add_edge(i,s,0);
for(int i=n1+1;i<=n;i++)
add_edge(i,t,b[i]),add_edge(t,i,0);
int flow=0;
while(bfs(s,t))
{
for(int i=s;i<=t;i++)
cur[i]=h[i];
flow+=dfs(s,t,INF);
}
printf("%d\n",totans-flow);
return 0;
}