POJ2184 奶牛展览 - 动态规划

传送门

题目大意,给定有序二元组{(sn,fn)}求一个子序列使得sigma{si}>=0,sigma{fi}>=0且使得sigma{si+fi}最大。

题解:

两种做法,一种是ppt上的,就是用dp[n][a]表示考虑了前n组,当前s的和为a时,f的最大值。

这个转移显然。

但是并不会。借鉴vijos《搭建双塔》这个题,我想的是用dp[n][d]表示前n组种,s-t的差为d时sigma{s+t}的最大值。

为什么可以这么做呢?sigma{s}>=0和sigma{t}>=0怎么限制?

注意到如果知道s-t的差=d并且两者之和=dp[n][d],那么解一个方程就可以求出s和t。

这时候判断一下即可。

解法1代码:

//POJ 2184
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 110
#define MAXM 1100
using namespace std;
int dp[2][MAXN*MAXM*2],s[MAXN],t[MAXN];
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF&&n)
	{
		for(int i=1;i<=n;i++)
			scanf("%d%d",&s[i],&t[i]);
		int zero=0,sumn=0,now=1,pre=0;
		for(int i=1;i<=n;i++)
			(s[i]>0)?sumn+=s[i]:(sumn-=s[i],zero-=s[i]);
		for(int i=0;i<=sumn;i++) dp[pre][i]=-1000000000;
		dp[pre][zero]=0;
		for(int i=1;i<=n;i++,swap(now,pre))
			for(int j=0;j<=sumn;j++)
			{
				dp[now][j]=dp[pre][j];
				if(j-s[i]>=0&&j-s[i]<=sumn)
					dp[now][j]=max(dp[now][j],dp[pre][j-s[i]]+t[i]);
			}
		int ans=0;swap(now,pre);
		for(int i=0;zero+i<=sumn;i++)
			if(dp[now][i+zero]>=0)
				ans=max(ans,i+dp[now][i+zero]);
		printf("%d\n",ans);
	}
	return 0;
}

解法2代码:
//POJ 2184
#include<cstdio>
#include<iostream>
#include<cstring>
#define MAXN 110
#define MAXM 1100
using namespace std;
//dp[n][m]:pre n dif m = sigma{s} - sigma{t} + 2*n*m , the maximum of sum
//dp[n][m]=max(dp[n-1][m],dp[n-1][m+s[n]-t[n]]+s[n]+t[n]).
//O(n^2*m)
int s[MAXN],t[MAXN],dp[2][4*MAXM*MAXN];
int calc(int s,int d)
{
	int a=(s+d)/2,b=(s-d)/2;
	return min(a,b);
}
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF&&n)
	{
		for(int i=1;i<=n;i++)
			scanf("%d%d",&s[i],&t[i]);
		const int m=1000;
		for(int i=0;i<=4*n*m;i++)
			dp[0][i]=INT_MIN/2;
		dp[0][2*n*m]=0;
		int pre=0,now=1;
		for(int i=1;i<=n;i++,swap(pre,now))
			for(int j=0;j<=4*n*m;j++)
			{
				dp[now][j]=INT_MIN/2;
				if(dp[pre][j]>=0) dp[now][j]=max(dp[now][j],dp[pre][j]);
				int y=j+s[i]-t[i];
				if(y>=0&&y<=4*n*m) dp[now][j]=max(dp[now][j],dp[pre][y]+s[i]+t[i]);
			}
		swap(pre,now);
		int ans=0;
		for(int i=0;i<=4*n*m;i++)
			if(dp[now][i]>=0&&calc(dp[now][i],i-2*n*m)>=0)
				ans=max(ans,dp[now][i]);
		printf("%d\n",ans);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值