题目大意,给定有序二元组{(sn,fn)}求一个子序列使得sigma{si}>=0,sigma{fi}>=0且使得sigma{si+fi}最大。
题解:
两种做法,一种是ppt上的,就是用dp[n][a]表示考虑了前n组,当前s的和为a时,f的最大值。
这个转移显然。
但是并不会。借鉴vijos《搭建双塔》这个题,我想的是用dp[n][d]表示前n组种,s-t的差为d时sigma{s+t}的最大值。
为什么可以这么做呢?sigma{s}>=0和sigma{t}>=0怎么限制?
注意到如果知道s-t的差=d并且两者之和=dp[n][d],那么解一个方程就可以求出s和t。
这时候判断一下即可。
解法1代码:
//POJ 2184
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 110
#define MAXM 1100
using namespace std;
int dp[2][MAXN*MAXM*2],s[MAXN],t[MAXN];
int main()
{
int n;
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=1;i<=n;i++)
scanf("%d%d",&s[i],&t[i]);
int zero=0,sumn=0,now=1,pre=0;
for(int i=1;i<=n;i++)
(s[i]>0)?sumn+=s[i]:(sumn-=s[i],zero-=s[i]);
for(int i=0;i<=sumn;i++) dp[pre][i]=-1000000000;
dp[pre][zero]=0;
for(int i=1;i<=n;i++,swap(now,pre))
for(int j=0;j<=sumn;j++)
{
dp[now][j]=dp[pre][j];
if(j-s[i]>=0&&j-s[i]<=sumn)
dp[now][j]=max(dp[now][j],dp[pre][j-s[i]]+t[i]);
}
int ans=0;swap(now,pre);
for(int i=0;zero+i<=sumn;i++)
if(dp[now][i+zero]>=0)
ans=max(ans,i+dp[now][i+zero]);
printf("%d\n",ans);
}
return 0;
}
解法2代码:
//POJ 2184 #include<cstdio> #include<iostream> #include<cstring> #define MAXN 110 #define MAXM 1100 using namespace std; //dp[n][m]:pre n dif m = sigma{s} - sigma{t} + 2*n*m , the maximum of sum //dp[n][m]=max(dp[n-1][m],dp[n-1][m+s[n]-t[n]]+s[n]+t[n]). //O(n^2*m) int s[MAXN],t[MAXN],dp[2][4*MAXM*MAXN]; int calc(int s,int d) { int a=(s+d)/2,b=(s-d)/2; return min(a,b); } int main() { int n; while(scanf("%d",&n)!=EOF&&n) { for(int i=1;i<=n;i++) scanf("%d%d",&s[i],&t[i]); const int m=1000; for(int i=0;i<=4*n*m;i++) dp[0][i]=INT_MIN/2; dp[0][2*n*m]=0; int pre=0,now=1; for(int i=1;i<=n;i++,swap(pre,now)) for(int j=0;j<=4*n*m;j++) { dp[now][j]=INT_MIN/2; if(dp[pre][j]>=0) dp[now][j]=max(dp[now][j],dp[pre][j]); int y=j+s[i]-t[i]; if(y>=0&&y<=4*n*m) dp[now][j]=max(dp[now][j],dp[pre][y]+s[i]+t[i]); } swap(pre,now); int ans=0; for(int i=0;i<=4*n*m;i++) if(dp[now][i]>=0&&calc(dp[now][i],i-2*n*m)>=0) ans=max(ans,dp[now][i]); printf("%d\n",ans); } return 0; }