BZOJ3329 Xorequ - 结论题 - 数位dp - 矩阵乘法

121 篇文章 0 订阅
15 篇文章 0 订阅

传送门

题目大意:请自行参考。

题解:首先这个式子等价于x^2x=3x,由于异或是不进位加法,不进位还想等了只能说明没有进位进而可以推知等价于x的二进制中没有相邻的1.

因此第一问二进制拆分后做数位dp即可。第二问随便列一列式子就可以矩乘了。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define lint long long
#define MAXA 3
#define MAXL 1000
using namespace std;
struct matrix{
    int v[MAXA][MAXA],n,m;
    matrix(int _n=0,int _m=0)
    {
        set_size(_n,_m);
    }
    inline int set_size(int _n,int _m)
    {
        n=_n;m=_m;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                v[i][j]=0;
        return 0;
    }
    inline matrix operator=(const matrix &b)
    {
        n=b.n,m=b.m;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                v[i][j]=b.v[i][j];
        return *this;
    }
    inline matrix operator*(const matrix &b)
    {
        matrix &a=*this,c(a.n,b.m);
        if(a.m!=b.n) return c;
        for(int i=1;i<=a.n;i++)
            for(int k=1;k<=b.m;k++)
                for(int j=1;j<=a.m;j++)
                    c.v[i][k]=(c.v[i][k]+(lint)a.v[i][j]*b.v[j][k]%mod)%mod;
        return c;
    }
    friend matrix operator*=(matrix &a,const matrix &b)
    {
        return a=a*b;
    }
};
inline matrix fast_pow(const matrix &a,lint k)
{
    if(k==(lint)1) return a;
    matrix ans;ans=fast_pow(a,k>>1LL);
    ans*=ans;
    if(k&1LL) ans*=a;
    return ans;
}
int a[MAXL];
inline int getnum(lint x)
{
    int len=0;
    while(x) a[++len]=x&1LL,x>>=1LL;
    for(int i=1;i<=len/2;i++) swap(a[i],a[len-i+1]);
    return len;
}
lint f[MAXL][2][2];//0/1 upto
lint solve(lint x)
{
    int n=getnum(x);if(!n) return 0LL;
    for(int i=1;i<=n;i++)
        f[i][0][0]=f[i][0][1]=f[i][1][0]=f[i][1][1]=(lint)0;
    f[1][0][0]=f[1][1][1]=(lint)1;
    for(int i=1;i<n;i++)
    {
        f[i+1][0][0]+=f[i][0][0];
        f[i+1][1][0]+=f[i][0][0];
        f[i+1][0][!a[i+1]]+=f[i][0][1];
        if(a[i+1]) f[i+1][1][1]+=f[i][0][1];
        f[i+1][0][0]+=f[i][1][0];
        f[i+1][0][!a[i+1]]+=f[i][1][1];
    }
    return f[n][0][0]+f[n][0][1]+f[n][1][0]+f[n][1][1]-(lint)1;
}
int getans(lint n)
{
    matrix A(2,1),B(2,2);
    B.v[1][1]=B.v[1][2]=B.v[2][1]=1;
    A.v[1][1]=A.v[2][1]=1;B.v[2][2]=0;
    if(n==1) return 2;
    A=fast_pow(B,n-1)*A;
    return (int)(((lint)A.v[1][1]+A.v[2][1])%mod);
}
int main()
{
    int T;scanf("%d",&T);
    while(T--)
    {
        lint n;scanf("%lld",&n);
        printf("%lld\n%d\n",solve(n),getans(n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值