题目大意:请自行参考。
题解:首先这个式子等价于x^2x=3x,由于异或是不进位加法,不进位还想等了只能说明没有进位进而可以推知等价于x的二进制中没有相邻的1.
因此第一问二进制拆分后做数位dp即可。第二问随便列一列式子就可以矩乘了。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define lint long long
#define MAXA 3
#define MAXL 1000
using namespace std;
struct matrix{
int v[MAXA][MAXA],n,m;
matrix(int _n=0,int _m=0)
{
set_size(_n,_m);
}
inline int set_size(int _n,int _m)
{
n=_n;m=_m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
v[i][j]=0;
return 0;
}
inline matrix operator=(const matrix &b)
{
n=b.n,m=b.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
v[i][j]=b.v[i][j];
return *this;
}
inline matrix operator*(const matrix &b)
{
matrix &a=*this,c(a.n,b.m);
if(a.m!=b.n) return c;
for(int i=1;i<=a.n;i++)
for(int k=1;k<=b.m;k++)
for(int j=1;j<=a.m;j++)
c.v[i][k]=(c.v[i][k]+(lint)a.v[i][j]*b.v[j][k]%mod)%mod;
return c;
}
friend matrix operator*=(matrix &a,const matrix &b)
{
return a=a*b;
}
};
inline matrix fast_pow(const matrix &a,lint k)
{
if(k==(lint)1) return a;
matrix ans;ans=fast_pow(a,k>>1LL);
ans*=ans;
if(k&1LL) ans*=a;
return ans;
}
int a[MAXL];
inline int getnum(lint x)
{
int len=0;
while(x) a[++len]=x&1LL,x>>=1LL;
for(int i=1;i<=len/2;i++) swap(a[i],a[len-i+1]);
return len;
}
lint f[MAXL][2][2];//0/1 upto
lint solve(lint x)
{
int n=getnum(x);if(!n) return 0LL;
for(int i=1;i<=n;i++)
f[i][0][0]=f[i][0][1]=f[i][1][0]=f[i][1][1]=(lint)0;
f[1][0][0]=f[1][1][1]=(lint)1;
for(int i=1;i<n;i++)
{
f[i+1][0][0]+=f[i][0][0];
f[i+1][1][0]+=f[i][0][0];
f[i+1][0][!a[i+1]]+=f[i][0][1];
if(a[i+1]) f[i+1][1][1]+=f[i][0][1];
f[i+1][0][0]+=f[i][1][0];
f[i+1][0][!a[i+1]]+=f[i][1][1];
}
return f[n][0][0]+f[n][0][1]+f[n][1][0]+f[n][1][1]-(lint)1;
}
int getans(lint n)
{
matrix A(2,1),B(2,2);
B.v[1][1]=B.v[1][2]=B.v[2][1]=1;
A.v[1][1]=A.v[2][1]=1;B.v[2][2]=0;
if(n==1) return 2;
A=fast_pow(B,n-1)*A;
return (int)(((lint)A.v[1][1]+A.v[2][1])%mod);
}
int main()
{
int T;scanf("%d",&T);
while(T--)
{
lint n;scanf("%lld",&n);
printf("%lld\n%d\n",solve(n),getans(n));
}
return 0;
}