[学习笔记][HEOI2013]BZOJ3165 Segment - 超哥线段树

传送门

题解:超哥线段树

先考虑直线L。

首先,假设当前线段树上区间的直线是L2,如果L完全在L2的上面或者L2完全在L的上面

那么把其中一个舍弃,递归结束。

否则求一下两直线交点。为了方便起见,把左端点比较小的记作L1,另一条记作L2。

求一下两条直线的交点。如果它小于等于mid,说明L1在右面的区间上完全覆盖了L2,因此当前区间保存L1,把L2下传到左区间。

否则要把L1下放到右区间。

然后由于某一个点的值不一定是这个点的函数值,因此询问时把所有祖先取max。

注意特判一个点不存在斜率的情况。

代码写的炒鸡难看。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 39989
#define INF 2000000000.0
#define inf -2000000000.0
#define getx(x,mod) ((x+last_ans-1+mod)%mod+1)
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
const double eps=0.0000001;
inline double gabs(double x)
{
    return (x>0.0)?x:-x;
}
inline int dcmp(double x)
{
    if(gabs(x)<eps) return 0;
    else return (x>0)?1:-1;
}
struct line{
    double k,b;int id;
    line(int _id=0,double _k=0.0,double _b=0.0)
    {
        id=_id;k=_k,b=_k;
    }
    line operator=(const line &L)
    {
        id=L.id;k=L.k;b=L.b;return *this;
    }
    inline double v(int x)const
    {
        return k*x+b;
    }
};
struct segment{
    int l,r;
    segment *ch[2];
    line L;
}*rt;
inline double getInter(const line &l1,const line &l2)
{
    return (l2.b-l1.b)/(l1.k-l2.k);
}
int build(segment* &rt,int l,int r)
{
    rt=new segment;rt->l=l,rt->r=r;
    rt->ch[0]=rt->ch[1]=NULL;
    rt->L.id=0,rt->L.k=0.0,rt->L.b=inf;
    if(l==r) return 0;
    int mid=(l+r)>>1;
    build(rt->ch[0],l,mid);
    build(rt->ch[1],mid+1,r);
    return 0;
}
int update(segment* &rt,int s,int t,line L)
{
    int l=rt->l,r=rt->r,mid=(l+r)>>1;
    if(s<=l&&r<=t)
    {
//      debug(l)sp,debug(r)ln;
//      cout<<L.v(l)<<" "<<L.v(r)<<endl;
        if(dcmp(L.v(l)-rt->L.v(l))==1) swap(L,rt->L);
//      cout<<L.v(l)<<" "<<L.v(r)<<endl;
        if(dcmp(L.v(r)-rt->L.v(r))<=0) return 0;
//      cout<<L.v(l)<<" "<<L.v(r)<<endl;
        double x=getInter(L,rt->L);
        if(x>mid) update(rt->ch[1],s,t,L);
        else swap(rt->L,L),update(rt->ch[0],s,t,L);
        return 0;
    }
    if(s<=mid) update(rt->ch[0],s,t,L);
    if(mid<t) update(rt->ch[1],s,t,L);
    return 0;
}
inline line better(const line &l1,const line &l2,int x)
{
    if(dcmp(l1.v(x)-l2.v(x))==0)
        if(l1.id<l2.id) return l1;
        else return l2;
    if(dcmp(l1.v(x)-l2.v(x))==1) return l1;
    else return l2;
}
line query(segment* &rt,int x)
{
    int l=rt->l,r=rt->r;
    if(l==r) return rt->L;
    int mid=(l+r)>>1;line L;
    if(x<=mid) L=query(rt->ch[0],x);
    else L=query(rt->ch[1],x);
    return better(rt->L,L,x);
}
int main()
{
    int n;scanf("%d",&n);
    build(rt,1,mod+10);line L;
    int last_ans=0,line_cnt=0;
    while(n--)
    {
        int opt;scanf("%d",&opt);
        if(!opt)
        {
            int x;scanf("%d",&x);x=getx(x,mod);
            printf("%d\n",last_ans=query(rt,x).id);
        }
        else{
            int a,b,c,d;scanf("%d%d%d%d",&a,&b,&c,&d);
            a=getx(a,mod),b=getx(b,1000000000),c=getx(c,mod),d=getx(d,1000000000);
//          cout<<a<<" "<<b<<" "<<c<<" "<<d<<endl;
            L.id=++line_cnt;L.k=0.0,L.b=double(max(b,d));
            if(a==c) /*debug(L.id)sp,debug(L.k)ln,debug(L.b)ln,*/update(rt,a,c,L);
            else{
                if(a>c) swap(a,c),swap(b,d);
//              cout<<a<<" "<<b<<" "<<c<<" "<<d<<endl;
                L.k=((double)d-b)/((double)c-a),L.b=b-a*L.k;
//              debug(L.id)sp,debug(L.k)sp,debug(L.b)ln;
                update(rt,a,c,L);
            }
        }
    }
}


<think>根据用户需求,用户希望寻找洛谷平台上适合练习的线段树相关经典练习题。结合引用内容,我们可以提取出一些经典的线段树题目。 引用[1]提到了洛谷P2824(排序),该题可以通过线段树分裂合并+set或者二分答案+线段树来解决,是一道经典题目。 引用[2]中提到了洛谷P1502(窗口的星星),是一道经典的扫描线问题(通常用线段树实现)。 引用[3]提到了一道分块练习题(但用户要求线段树),所以我们可以忽略分块,但其中提到线段树与树状数组过不了,说明该题可能设计为分块,所以不推荐。 引用[4]中提到了hdu1542(Atlantis,扫描线法)以及一道线段树练习题(未给出题号,但代码是线段树实现的海报张贴问题,类似于洛谷P5490【模板】扫描线)。 此外,根据洛谷常见的线段树经典题,我们还可以补充一些: 1. 洛谷P3372 【模板】线段树1 - 区间修改(加法)、区间查询(求和) 2. 洛谷P3373 【模板】线段树2 - 区间修改(加法、乘法)、区间查询(求和) 3. 洛谷P5490 【模板】扫描线 - 矩形面积并(Atlantis问题) 4. 洛谷P2572 [SCOI2010]序列操作 - 多种区间操作(赋值、取反、求和、求连续1的个数) 5. 洛谷P1471 方差 - 维护区间和与区间平方和 6. 洛谷P1531 I Hate It - 区间最值、单点修改(较简单) 结合引用中提到的题目,我们重点推荐: 1. 洛谷P2824 [HEOI2016/TJOI2016]排序(引用[1]) 题目大意:给出一个1到n的全排列,现在进行m次局部排序,排序分为两种:(1)将区间[l,r]升序排序;(2)将区间[l,r]降序排序。最后询问第q位置上的数。 解题方法:二分答案+线段树线段树分裂合并(较难)。该题是线段树应用的经典题目,可以锻炼对线段树的灵活运用。 2. 洛谷P1502 窗口的星星(引用[2]) 题目大意:平面上有n颗星星,每颗星星有一个亮度。用一个宽为W、高为H的矩形去框星星,求矩形能框住的星星的亮度之和的最大值(边框上的星星不算)。 解题方法:扫描线+线段树。该题是经典的扫描线问题,需要将问题转化为区间操作,并用线段树维护最大值。 3. 洛谷P5490 【模板】扫描线(引用[4]中hdu1542的同类型题,在洛谷上为P5490) 题目大意:求n个矩形的面积并。 解题方法:扫描线+线段树。这是扫描线最基础的应用,适合学习扫描线算法。 4. 洛谷P2572 [SCOI2010]序列操作 题目大意:对一个01序列进行5种操作:区间置0、区间置1、区间取反、区间求和、区间求连续1的个数。 解题方法:线段树维护多个标记(覆盖标记、取反标记)和复杂信息(连续段)。这题对线段树的能力提升很大。 5. 洛谷P3373 【模板】线段树2 题目大意:区间乘、区间加、区间求和。线段树处理两种区间修改的模板题。 6. 洛谷P1471 方差 题目大意:维护一个数列,支持区间加,以及求区间平均值和区间方差。 解题方法:线段树维护区间和与区间平方和。通过数学推导,方差可以由平方和与和推导出来。 7. 洛谷P1531 I Hate It 题目大意:单点修改,区间查询最大值(RMQ问题)。 解题方法:线段树维护区间最大值。适合入门。 以上题目难度由浅入深,涵盖了线段树的基本操作、延迟标记、扫描线、复杂信息维护等。 相关问题: 1. 线段树在处理区间问题时有哪些优势? 2. 线段树在处理区间修改时,延迟标记(lazy tag)是如何工作的? 3. 扫描线算法通常用于解决哪些问题? 4. 如何用线段树维护区间历史最值? 5. 线段树和树状数组在应用上有何异同?</think>### 线段树经典练习题推荐(洛谷平台) 以下是结合经典题型和引用内容的推荐题目列表,难度由浅入深,覆盖线段树的核心应用场景: --- #### **1. 基础模板题** - **P3372 【模板】线段树1** - **内容**:区间加法、区间求和 - **推荐理由**:线段树最基础的模板题,适合入门[^2]。 - **P3373 【模板】线段树2** - **内容**:区间加法+乘法混合操作 - **关键点**:需处理多种标记的优先级(先乘后加)[^4]。 --- #### **2. 扫描线应用(面积/覆盖问题)** - **P5490 【模板】扫描线** - **内容**:求 $n$ 个矩形的面积并 - **方法**:扫描线+线段树维护区间覆盖长度[^4]。 - **P1502 窗口的星星** - **内容**:用固定窗口框住星星的最大亮度 - **技巧**:将点转化为矩形,扫描线求最大重叠值[^2]。 --- #### **3. 二分答案+线段树** - **P2824 [HEOI2016/TJOI2016]排序** - **内容**:对序列的局部区间升序/降序排序,最后查询单点值 - **解法**: 1. 二分答案 $x$,将序列转化为 $01$ 序列($≥x$ 为 $1$,否则为 $0$) 2. 用线段树模拟区间排序(统计 $1$ 的数量并区间赋值)[^1]。 --- #### **4. 动态开点与权值线段树** - **P3960 列队(NOIP2017)** - **内容**:矩阵中多次删除元素并添加到队尾 - **优化**:动态开点线段树维护区间删除和查询位置。 --- #### **5. 复杂标记与信息维护** - **P2572 [SCOI2010]序列操作** - **内容**:区间赋值、取反、求和、求连续 $1$ 的最大长度 - **难点**:设计标记传递规则,维护多维度信息(需记录左右端点状态)[^4]。 - **P1471 方差** - **内容**:维护区间方差 $s^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$ - **技巧**:转化为维护区间和 $\sum x_i$ 与区间平方和 $\sum x_i^2$[^2]。 --- #### **6. 空间优化与分块对比** - **分块练习题(如引用[3])** - **场景**:当空间限制严格时(如 $4\text{MB}$),分块可能优于线段树 - **思考点**:对比线段树与分块在时间/空间上的取舍[^3]。 --- ### 练习建议 1. **先掌握模板**:完成 `P3372` 和 `P3373`,理解延迟标记(lazy tag)的实现。 2. **再攻应用场景**:尝试扫描线(`P5490`)和二分答案(`P2824`)。 3. **最后挑战综合题**:如 `P2572` 需同时处理多种操作,适合检验综合能力。 > 提示:所有题目均可在洛谷在线评测系统提交,部分题目在引用[1]的OJ中已收录题解。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值