bzoj 3160 万径人踪灭 - FFT - manacher

显然一对位置在(x,y)权值相等的字符会对(x+y)/2这个位置产生1的贡献,然后每个位置求出2的权值次方减去1求和,再减去连续的回文串即可,前者跑两次FFT,后者跑一个manacher即可。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define mod 1000000007
#define N 1000010
#define db double
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
const double pi=acos(-1);
struct E{
    db x,y;
    E(db _x=0.0,db _y=0.0)
    { x=_x,y=_y; }
    inline E operator=(const E &w)
    { x=w.x,y=w.y;return *this; }
    inline E operator+(const E &w)
    { return E(x+w.x,y+w.y); }
    inline E operator-(const E &w)
    { return E(x-w.x,y-w.y); }
    inline E operator*(const E &w)
    { return E(x*w.x-y*w.y,x*w.y+y*w.x); }
    inline E operator*=(const E &w)
    { return (*this)=(*this)*w; }
}a[N],b[N];int r[N];
int A[N],B[N],mi2[N];
char s[N],t[N];
inline int FFT(E *a,int n,int sgn)
{
    for(int i=0;i<n;i++) if(i<r[i]) swap(a[i],a[r[i]]);
    for(int i=1;i<n;i<<=1)
    {
        E wn(cos(pi/i),sgn*sin(pi/i));
        for(int j=0,p=i<<1;j<n;j+=p)
        {
            E w(1.0,0.0);
            for(int k=0;k<i;k++,w*=wn)
            {
                E x=a[j+k],y=w*a[j+k+i];
                a[j+k]=x+y,a[j+k+i]=x-y;
            }
        }
    }
    return 0;
}
inline int solve(int *A,int *B,int n)
{
    int x=2*n,L;for(n=1,L=0;n<=x;n<<=1,L++);
    for(int i=1;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
    for(int i=0;i<n;i++) a[i]=E((db)A[i],0.0);
    for(int i=0;i<n;i++) b[i]=E((db)A[i],0.0);
    FFT(a,n,1),FFT(b,n,1);
    for(int i=0;i<n;i++) a[i]*=b[i];
    FFT(a,n,-1);
    for(int i=0;i<n;i++) B[i]+=(int)(a[i].x/n+0.5);
    return 0;
}
inline int flip(int *a,int n)
{
    for(int i=1;i<=n;i++) a[i]^=1;return 0;
}
inline int manacher(char *s,int n)
{
    int c=0,ans=0;
    for(int i=1;i<=n;i++) t[++c]='#',t[++c]=s[i];
    t[++c]='#';
    for(int i=0;i<=n;i++) r[i]=0;
    for(int i=1,p=0;i<=c;i++)
    {
        if(i<=p+r[p]) r[i]=min(p+r[p]-i,r[2*p-i]);
        while(i+r[i]<c&&i-r[i]-1&&t[i+r[i]+1]==t[i-r[i]-1]) r[i]++;
        if(i+r[i]>p+r[p]) p=i;
    }
//  for(int i=1;i<=c;i++) cout<<t[i]<<" ";cerr ln;
//  for(int i=1;i<=c;i++) cout<<r[i]<<" ";cerr ln;
    for(int i=1;i<=c;i++)
        if(r[i]) (ans+=(r[i]-1)/2+1)%=mod;
    return ans;
}
int main()
{
    scanf("%s",s+1);int n=(int)strlen(s+1);
    for(int i=1;i<=n;i++) A[i]=(s[i]=='a');
    solve(A,B,n+1),flip(A,n),solve(A,B,n+1);int ans=0;
    for(int i=mi2[0]=1;i<=2*n;i++) mi2[i]=mi2[i-1]*2%mod;
    for(int i=2;i<=2*n;i++)
        if(B[i]) (ans+=mi2[(B[i]-1)/2+1]-1)%=mod;
    return !printf("%d\n",(ans-manacher(s,n)+mod)%mod);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值