bzoj 3160 万径人踪灭 - FFT - manacher

7人阅读 评论(0) 收藏 举报
分类:

显然一对位置在(x,y)权值相等的字符会对(x+y)/2这个位置产生1的贡献,然后每个位置求出2的权值次方减去1求和,再减去连续的回文串即可,前者跑两次FFT,后者跑一个manacher即可。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define mod 1000000007
#define N 1000010
#define db double
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
const double pi=acos(-1);
struct E{
    db x,y;
    E(db _x=0.0,db _y=0.0)
    { x=_x,y=_y; }
    inline E operator=(const E &w)
    { x=w.x,y=w.y;return *this; }
    inline E operator+(const E &w)
    { return E(x+w.x,y+w.y); }
    inline E operator-(const E &w)
    { return E(x-w.x,y-w.y); }
    inline E operator*(const E &w)
    { return E(x*w.x-y*w.y,x*w.y+y*w.x); }
    inline E operator*=(const E &w)
    { return (*this)=(*this)*w; }
}a[N],b[N];int r[N];
int A[N],B[N],mi2[N];
char s[N],t[N];
inline int FFT(E *a,int n,int sgn)
{
    for(int i=0;i<n;i++) if(i<r[i]) swap(a[i],a[r[i]]);
    for(int i=1;i<n;i<<=1)
    {
        E wn(cos(pi/i),sgn*sin(pi/i));
        for(int j=0,p=i<<1;j<n;j+=p)
        {
            E w(1.0,0.0);
            for(int k=0;k<i;k++,w*=wn)
            {
                E x=a[j+k],y=w*a[j+k+i];
                a[j+k]=x+y,a[j+k+i]=x-y;
            }
        }
    }
    return 0;
}
inline int solve(int *A,int *B,int n)
{
    int x=2*n,L;for(n=1,L=0;n<=x;n<<=1,L++);
    for(int i=1;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
    for(int i=0;i<n;i++) a[i]=E((db)A[i],0.0);
    for(int i=0;i<n;i++) b[i]=E((db)A[i],0.0);
    FFT(a,n,1),FFT(b,n,1);
    for(int i=0;i<n;i++) a[i]*=b[i];
    FFT(a,n,-1);
    for(int i=0;i<n;i++) B[i]+=(int)(a[i].x/n+0.5);
    return 0;
}
inline int flip(int *a,int n)
{
    for(int i=1;i<=n;i++) a[i]^=1;return 0;
}
inline int manacher(char *s,int n)
{
    int c=0,ans=0;
    for(int i=1;i<=n;i++) t[++c]='#',t[++c]=s[i];
    t[++c]='#';
    for(int i=0;i<=n;i++) r[i]=0;
    for(int i=1,p=0;i<=c;i++)
    {
        if(i<=p+r[p]) r[i]=min(p+r[p]-i,r[2*p-i]);
        while(i+r[i]<c&&i-r[i]-1&&t[i+r[i]+1]==t[i-r[i]-1]) r[i]++;
        if(i+r[i]>p+r[p]) p=i;
    }
//  for(int i=1;i<=c;i++) cout<<t[i]<<" ";cerr ln;
//  for(int i=1;i<=c;i++) cout<<r[i]<<" ";cerr ln;
    for(int i=1;i<=c;i++)
        if(r[i]) (ans+=(r[i]-1)/2+1)%=mod;
    return ans;
}
int main()
{
    scanf("%s",s+1);int n=(int)strlen(s+1);
    for(int i=1;i<=n;i++) A[i]=(s[i]=='a');
    solve(A,B,n+1),flip(A,n),solve(A,B,n+1);int ans=0;
    for(int i=mi2[0]=1;i<=2*n;i++) mi2[i]=mi2[i-1]*2%mod;
    for(int i=2;i<=2*n;i++)
        if(B[i]) (ans+=mi2[(B[i]-1)/2+1]-1)%=mod;
    return !printf("%d\n",(ans-manacher(s,n)+mod)%mod);
}

查看评论

[BZOJ3160]万径人踪灭(FFT+manacher)

题目描述传送门题目大意:在一个只含ab的字符串中选取一个子序列,使得:1、字符和下标都关于一个中心对称2、不能是连续的一段。求方案数。题解这题我的方法好蠢啊→_→ 首先容斥一下,答案=所有子序列的方...
  • Clove_unique
  • Clove_unique
  • 2017-04-24 14:37:35
  • 442

BZOJ 3160 万径人踪灭 FFT+Manacher

BZOJ 3160 万径人踪灭 FFT+Manacher
  • wzq_QwQ
  • wzq_QwQ
  • 2015-09-02 08:18:40
  • 2102

bzoj3160 万径人踪灭

manacher+FFT
  • AaronGZK
  • AaronGZK
  • 2016-05-25 00:20:22
  • 2885

3160: 万径人踪灭|FFT|manacher

答案可以转化为所有的回文子序列减去回文子串 回文子串的个数可以用manachermanacher来求出 回文子序列的个数可以这样求: 先求出以每个点为中心左右对称的点的个数xx,那么以这个点为中...
  • ws_yzy
  • ws_yzy
  • 2016-04-07 17:19:48
  • 2513

bzoj3160: 万径人踪灭

题面传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3160 思路:首先题目中不要连续的回文串,那么答案就是总的回文串-连续回文串 连续回文...
  • thy_asdf
  • thy_asdf
  • 2015-07-21 08:17:51
  • 427

[BZOJ3160] 万径人踪灭 - FFT快速傅里叶变换 - manacher

大爷题解:BZOJ 3160 万径人踪灭         讲道理的话思路我是想到了的……然后不会manacher就现学了一发。         记得有些奇奇怪怪的地方要用long long! #...
  • whzzt
  • whzzt
  • 2016-06-04 18:39:18
  • 427

[BZOJ]3160 万径人踪灭 Manacher + FFT

3160: 万径人踪灭Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1753  Solved: 977[Submit][Status][Discuss...
  • MaxMercer
  • MaxMercer
  • 2018-01-17 21:48:58
  • 118

【bzoj3160】万径人踪灭 FFT+manacher

首先把字符串用#间隔开 总数-连续的字符串 连续的用manacher求 总数如何求? f[i]表示以i为中心有多少对对称的字符(不包含#,但包含本身) ans=∑2^f[i]-n 原字符串...
  • u012288458
  • u012288458
  • 2016-03-24 20:03:07
  • 306

【BZOJ3160】万径人踪灭

【题目链接】点击打开链接【思路要点】枚举对称中心,设关于该中心对称点的个数为\(x\),以该点为中心的最长回文子串长度为\(y\),那么该点对答案的贡献应为\(2^x-\lfloor\frac{y+1...
  • qq_39972971
  • qq_39972971
  • 2018-02-26 16:35:18
  • 24

【BZOJ3813】【UOJ38】【清华集训2014】奇数国

【题目链接】BZOJUOJ【思路要点】首先,有一个直观的做法是对每一个质因子维护一棵树状数组,记录区间中该质因子指数的和。询问时先将\(product\)质因数分解的结果求出来,再用快速幂计算欧拉函数...
  • qq_39972971
  • qq_39972971
  • 2018-02-27 09:55:19
  • 28
    个人资料
    持之以恒
    等级:
    访问量: 3万+
    积分: 2121
    排名: 2万+
    最新评论