显然一对位置在(x,y)权值相等的字符会对(x+y)/2这个位置产生1的贡献,然后每个位置求出2的权值次方减去1求和,再减去连续的回文串即可,前者跑两次FFT,后者跑一个manacher即可。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define mod 1000000007
#define N 1000010
#define db double
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
const double pi=acos(-1);
struct E{
db x,y;
E(db _x=0.0,db _y=0.0)
{ x=_x,y=_y; }
inline E operator=(const E &w)
{ x=w.x,y=w.y;return *this; }
inline E operator+(const E &w)
{ return E(x+w.x,y+w.y); }
inline E operator-(const E &w)
{ return E(x-w.x,y-w.y); }
inline E operator*(const E &w)
{ return E(x*w.x-y*w.y,x*w.y+y*w.x); }
inline E operator*=(const E &w)
{ return (*this)=(*this)*w; }
}a[N],b[N];int r[N];
int A[N],B[N],mi2[N];
char s[N],t[N];
inline int FFT(E *a,int n,int sgn)
{
for(int i=0;i<n;i++) if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=1;i<n;i<<=1)
{
E wn(cos(pi/i),sgn*sin(pi/i));
for(int j=0,p=i<<1;j<n;j+=p)
{
E w(1.0,0.0);
for(int k=0;k<i;k++,w*=wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
return 0;
}
inline int solve(int *A,int *B,int n)
{
int x=2*n,L;for(n=1,L=0;n<=x;n<<=1,L++);
for(int i=1;i<n;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
for(int i=0;i<n;i++) a[i]=E((db)A[i],0.0);
for(int i=0;i<n;i++) b[i]=E((db)A[i],0.0);
FFT(a,n,1),FFT(b,n,1);
for(int i=0;i<n;i++) a[i]*=b[i];
FFT(a,n,-1);
for(int i=0;i<n;i++) B[i]+=(int)(a[i].x/n+0.5);
return 0;
}
inline int flip(int *a,int n)
{
for(int i=1;i<=n;i++) a[i]^=1;return 0;
}
inline int manacher(char *s,int n)
{
int c=0,ans=0;
for(int i=1;i<=n;i++) t[++c]='#',t[++c]=s[i];
t[++c]='#';
for(int i=0;i<=n;i++) r[i]=0;
for(int i=1,p=0;i<=c;i++)
{
if(i<=p+r[p]) r[i]=min(p+r[p]-i,r[2*p-i]);
while(i+r[i]<c&&i-r[i]-1&&t[i+r[i]+1]==t[i-r[i]-1]) r[i]++;
if(i+r[i]>p+r[p]) p=i;
}
// for(int i=1;i<=c;i++) cout<<t[i]<<" ";cerr ln;
// for(int i=1;i<=c;i++) cout<<r[i]<<" ";cerr ln;
for(int i=1;i<=c;i++)
if(r[i]) (ans+=(r[i]-1)/2+1)%=mod;
return ans;
}
int main()
{
scanf("%s",s+1);int n=(int)strlen(s+1);
for(int i=1;i<=n;i++) A[i]=(s[i]=='a');
solve(A,B,n+1),flip(A,n),solve(A,B,n+1);int ans=0;
for(int i=mi2[0]=1;i<=2*n;i++) mi2[i]=mi2[i-1]*2%mod;
for(int i=2;i<=2*n;i++)
if(B[i]) (ans+=mi2[(B[i]-1)/2+1]-1)%=mod;
return !printf("%d\n",(ans-manacher(s,n)+mod)%mod);
}