简单的数学题 - 数论

题目大意:给定正整数nn,求有多少个整数四元组 a , b , c , d ∈ [ 0 , n − 1 ] a,b,c,d\in [0,n-1] a,b,c,d[0,n1]满足 a b = c d ( m o d n ) ab=cd\pmod n ab=cd(modn)。由于 n n n非常大,将以质因数分解的形式给出 n = ∏ i = 1 m p i c i n=\prod_{i=1}^mp_i^{c_i} n=i=1mpici m ≤ 5 × 1 0 5 , p , c ≤ 1 0 9 m\le5\times 10^5,p,c\le10^9 m5×105,p,c109
题解:由中国剩余定理的结论知我们只需要求出 n = p c n=p^c n=pc的答案然后乘起来即可。
考虑这个怎么做,不妨设 c n t i = ∑ ( a , b ) [ a b   m o d   n = i ] cnt_i=\sum_{(a,b)}[ab\bmod n=i] cnti=(a,b)[abmodn=i],那么答案就是 ∑ i = 0 n − 1 c n t i 2 \sum_{i=0}^{n-1}cnt^2_i i=0n1cnti2。显然 c n t 0 = n 2 − ∑ i = 1 n − 1 c n t i cnt_0=n^2-\sum_{i=1}^{n-1}cnt_i cnt0=n2i=1n1cnti,考虑某个 c n t i ( i > 0 ) cnt_i(i>0) cnti(i>0)怎么算。
不妨设 i = p k q i=p^kq i=pkq,满足 gcd ⁡ ( p , q ) = 1 \gcd(p,q)=1 gcd(p,q)=1。显然 0 ≤ k &lt; c , q &gt; 0 0\le k&lt;c,q&gt;0 0k<c,q>0
那么 a b = i ab=i ab=i,等价于 a = p k ′ a ′ , b = p k − k ′ b ′ , gcd ⁡ ( a ′ , p ) = gcd ⁡ ( b ′ , p ) = 1 , a ′ b ′ = q ( m o d p c − k ) a=p^{k&#x27;}a&#x27;,b=p^{k-k&#x27;}b&#x27;,\gcd(a&#x27;,p)=\gcd(b&#x27;,p)=1,a&#x27;b&#x27;=q\pmod {p^{c-k}} a=pka,b=pkkb,gcd(a,p)=gcd(b,p)=1,ab=q(modpck),并且每求出这样的一组 ( a ′ , b ′ , k ′ ) (a&#x27;,b&#x27;,k&#x27;) (a,b,k),都会有 p k ′ × p k − k ′ = p k p^{k&#x27;}\times p^{k-k&#x27;}=p^k pk×pkk=pk ( a , b , k ) (a,b,k) (a,b,k)与之对应,而 ( a ′ , b ′ , k ′ ) (a&#x27;,b&#x27;,k&#x27;) (a,b,k)的组数显然就是 ϕ ( p c − k ) \phi(p^{c-k}) ϕ(pck),与 k ′ k&#x27; k无关,因此对于每个 k ′ k&#x27; k,答案就是 p k ϕ ( p c − k ) p^{k}\phi(p^{c-k}) pkϕ(pck),因此 c n t i = ( k + 1 ) p k ϕ ( p c − k ) = ( k + 1 ) ϕ ( p c ) cnt_i=(k+1)p^k\phi(p^{c-k})=(k+1)\phi(p^c) cnti=(k+1)pkϕ(pck)=(k+1)ϕ(pc)
然后考虑对于每个 k k k有多少个 i i i,显然就是 ϕ ( p c − k ) \phi(p^{c-k}) ϕ(pck)
首先考虑 ∑ i = 1 n − 1 c n t i 2 = ∑ k = 0 c − 1 ( k + 1 ) 2 ϕ 2 ( p c ) ϕ ( p c − k ) = ϕ 2 ( p c ) ( p − 1 ) p c ∑ k = 1 c k 2 ( 1 p ) k \sum_{i=1}^{n-1}cnt_i^2=\sum_{k=0}^{c-1}(k+1)^2\phi^2(p^c)\phi(p^{c-k})=\phi^2(p^c)(p-1)p^c\sum_{k=1}^ck^2\left(\frac{1}{p}\right)^k i=1n1cnti2=k=0c1(k+1)2ϕ2(pc)ϕ(pck)=ϕ2(pc)(p1)pck=1ck2(p1)k
后面那个怎么求:
S 2 = ∑ k = 1 n k 2 q k S 2 − n 2 q n = ∑ k = 2 n ( k − 1 ) 2 q k − 1 q S 2 − n 2 q n + 1 = ∑ k = 2 n ( k 2 − 2 k + 1 ) q k q S 2 − n 2 q n + 1 = ∑ k = 2 n k 2 q k − 2 ∑ k = 2 n k q k + ∑ k = 2 n q k q S 2 − n 2 q n + 1 = S 2 − q + 2 ( S 1 − q ) + S 0 − q S 2 = n 2 q n + 1 − q + 2 ( S 1 − q ) + S 0 − q q − 1 S_2=\sum_{k=1}^n k^2q^k\\ S_2-n^2q^n=\sum_{k=2}^n(k-1)^2q^{k-1}\\ qS_2-n^2q^{n+1}=\sum_{k=2}^n(k^2-2k+1)q^k\\ qS_2-n^2q^{n+1}=\sum_{k=2}^nk^2q^k-2\sum_{k=2}^nkq^k+\sum_{k=2}^nq^k\\ qS_2-n^2q^{n+1}=S_2-q+2(S_1-q)+S_0-q\\ S_2=\frac{n^2q^{n+1}-q+2(S_1-q)+S_0-q}{q-1} S2=k=1nk2qkS2n2qn=k=2n(k1)2qk1qS2n2qn+1=k=2n(k22k+1)qkqS2n2qn+1=k=2nk2qk2k=2nkqk+k=2nqkqS2n2qn+1=S2q+2(S1q)+S0qS2=q1n2qn+1q+2(S1q)+S0q

其中 S 1 = ∑ k = 1 n k q k , S 0 = ∑ k = 1 n q k S_1=\sum_{k=1}^nkq^k,S_0=\sum_{k=1}^nq^k S1=k=1nkqk,S0=k=1nqk,求法同理。
剩余还有一个 c n t 0 2 cnt_0^2 cnt02,过程类似,略。

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define mod 1000000007
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define gc getchar()
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
inline int inn()
{
    int x,ch;while((ch=gc)<'0'||ch>'9');
    x=ch^'0';while((ch=gc)>='0'&&ch<='9')
        x=(x<<1)+(x<<3)+(ch^'0');return x;
}
inline int fast_pow(int x,int k,int ans=1) { for(;k;k>>=1,x=(lint)x*x%mod) (k&1)?ans=(lint)ans*x%mod:0;return ans; }
inline int inv(int x) { return fast_pow(x,mod-2); }
inline lint squ(int x) { return (lint)x*x; }
inline int solve(int p,int c)
{
    int n=fast_pow(p,c),t=n-fast_pow(p,c-1);if(t<0) t+=mod;
    int q=inv(p),v=fast_pow(q,c),z=inv(q-1),c0=q*(v-1ll)%mod*z%mod;
    int c1=((lint)c*v%mod*q-c0)%mod*z%mod;if(c1<0) c1+=mod;
    int c2=((lint)c*c%mod*v%mod*q%mod-q-2ll*(c1-q)%mod+(lint)q*(c0-v)%mod)*z%mod;if(c2<0) c2+=mod;
    return ((lint)t*t%mod*(p-1)%mod*n%mod*c2+squ((lint)n*n%mod-t*(p-1ll)%mod*n%mod*c1%mod))%mod;
}
int main()
{
    int ans=1;
    for(int T=inn(),p,c;T;T--) p=inn(),c=inn(),ans=(lint)ans*solve(p,c)%mod;
    return !printf("%d\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值