Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding
通过联合球形树和文本进行层次主题挖掘
论文题目
作者:Yu Meng1∗ , Yunyi Zhang1∗ , Jiaxin Huang1 , Yu Zhang1 , Chao Zhang2 , Jiawei Han1
作者单位:
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
College of Computing, Georgia Institute of Technology, GA, USA
发表会议:Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20)
发表年限: August 23–27, 2020
背景 Modivation
背景:带有倾向性地分层挖掘用户感兴趣的主题
解决问题:传统方法无法兼顾挖掘主题的层次性以及有针对性地挖掘用户感兴趣的主题
采用方法:构建的JoSH算法中,采用的球形空间可以很好描述文本的相似性与类别关系,采用相对位置度量类别与类别之间的关系