【论文笔记 3】Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding(KDD20)

Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding

通过联合球形树和文本进行层次主题挖掘

论文题目

作者:Yu Meng1∗ , Yunyi Zhang1∗ , Jiaxin Huang1 , Yu Zhang1 , Chao Zhang2 , Jiawei Han1

作者单位:

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

College of Computing, Georgia Institute of Technology, GA, USA

发表会议:Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20)

发表年限: August 23–27, 2020

背景 Modivation

背景:带有倾向性地分层挖掘用户感兴趣的主题

解决问题:传统方法无法兼顾挖掘主题的层次性以及有针对性地挖掘用户感兴趣的主题

采用方法:构建的JoSH算法中,采用的球形空间可以很好描述文本的相似性与类别关系,采用相对位置度量类别与类别之间的关系

传统方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值