目录
1.软件界面
2.工具包功能简介
mICA (masked independent component analysis)工仅限于特定感兴趣区域的ICA,已经被证明可以检测特定脑区的局部FC 网络,包括小脑,脑干,后扣带回皮层,盖岛皮质,海马和脊髓。它以 FSL 套件中的命令行工具为基础,用于执行 ICA 和相关分析(如特定数据预处理、基于图谱的掩码生成、基于 mICA 的解析、双回归和直接回溯重建)。mICA 工具箱对神经成像领域的研究人员很有帮助。它有助于研究大脑(子)区域的内在连通性,并重建其外在连通性(即与掩膜外区域的连通性)。此外,该工具箱还提供了一种简便的方法来计算一系列分解维度上的 ICA 再现性,可用于克服常见的维度估计问题。
MICA提供一下分析方法:
Single session mICA:使用FSL MELODIC 对一个受试者进行单受试者掩蔽 ICA 分析,或以批处理模式对多个受试者进行独立分析。
Multi-session mICA:在FSL MELODIC中运行掩蔽组ICA,采用时间级联或张量模式。
Back reconstruction
该工具箱估计您之前分析中蒙面独立成分(ICs)的功能连接性,与相同(即蒙面)区域或大脑的任何其他区域。有两种不同的方法可供选择:双重回归和直接反向重建。对于前者,工具箱使用FSL的双重回归脚本的修改版本,该版本在蒙面数据上应用第一次回归步骤,在整个大脑数据上应用后续步骤。对于后者,结果在单一步骤中计算。成分的时间序列作为设计矩阵,在所有受试者的时间串联的整个大脑数据上应用广义线性模型(GLM)。由于使用FSL GLM进行此类计算需要巨大的计算资源,因为所有受试者的数据都被加载到内存中,工具箱自动沿着Z轴分割串联的4D数据,并按切片进行GLM拟合。估算先前分析中被屏蔽 IC 的功能连接性。
Reproducibility analysis:执行随机分割一半的可重复性估计。对于每一次重复,独立成分分析(ICA)分别在分割的两半样本上进行。然后使用皮尔逊系数计算ICs空间图之间的交叉相关矩阵。使用匈牙利排序算法完成ICs的组间匹配。所有匹配的IC对的平均相关性,平均值取自N次重复,然后用作可重复性的度量。根据估计的可重复性曲线,用户可以选择分析的最优维度。我们推荐选择曲线的全局最大值。然而,在某些情况下,这个值可能不适用,例如,当它导致在显著比例的mICAs中无法收敛,或者如果用户对研究的解剖区域有先验知识。在这些情况下,可以选择其他局部最大值之一。95%置信区间可以帮助评估这些局部最大值的稳定性。
3.软件安装注意事项
1. 解压缩所需文件夹中的所有文件
2. 安装FSL 并确保已设置 FSLDIR 环境变量(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation)
3. 检查您是否安装了 Python 2.7.6 或更高版本(尚不支持 Python 3.*)“python -V”。如果没有,请安装/更新 Python。(仅支持 Python 2.*)
4. 安装python 模块 Munkres:从以下网址下载模块:https://pypi.python.org/pypi/munkres/#downloads 解压软件包"tar -zxvf ~/Downloads/munkres-1.0.7.tar.gz" 安装软件包 "cd ~/munkres-1.0.7; sudo python setup.py install"
5. 安装python 模块 matplotlib:Debian/Ubuntu:sudo apt-get install python-matplotlib 其他:http://matplotlib.org/users/installing.html
6. 使用以下命令启动 mICA 工具箱:installation_dir/mICA
参考文献:
Moher Alsady T, Blessing EM, Beissner F. MICA-A toolbox for masked independent component analysis of fMRI data. Hum Brain Mapp. 2016 Oct;37(10):3544-56. doi: 10.1002/hbm.23258. Epub 2016 May 11. PMID: 27168407; PMCID: PMC6867364.