【深度学习】卷积神经网络发展史从LeNet到AlexNet

本文详细介绍了卷积神经网络(CNN)的发展历程,从经典的LeNet开始,讨论了其网络结构,包括卷积层、池化层和全连接层。接着,文章转向AlexNet,解释了其在深度学习历史上的重要地位,如ReLU激活函数、Dropout、数据增强以及多GPU训练的使用。AlexNet的成功开启了深度学习的新篇章。
摘要由CSDN通过智能技术生成

本文主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细的介绍,将按下图的CNN发展史进行描述:

上图所示是刘昕博士总结的CNN结构演化的历史,起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等手工设计的特征盖过。随着ReLU和dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破–AlexNet.

CNN的演化路径可以总结为以下几个方向:

从LeNet到AlexNet
进化之路一:网络结构加深
进化之路二:加强卷积功能
进化之路三:从分类到检测
进化之路四:新增功能模块

本文将对CNN发展的四条路径中最具代表性的CNN模型结构进行讲解。

一切的开始(LeNet)

下图是广为流传LeNet的网络结构,麻雀虽小,但五脏俱全,卷积层、pooling层、全连接层,这些都是现代CNN网络的基本组件。

  • 输入尺寸:32*32
  • 卷积层:3个
  • 降采样层:2个
  • 全连接层:1个
  • 输出:10个类别(数字0-9的概率)

因为LeNet可以说是CNN的开端,所以这里简单介绍一下各个组件的用途与意义。

Input (32*32)

输入图像Size为32*32。这要比mnist数据库中最大的字母(28*28)还大。这样做的目的是希望潜在的明显特征,如笔画断续、角点能够出现在最高层特征监测子感受野的中心。

C1, C3, C5 (卷积层)

卷积核在二维平面上平移,并且卷积核的每个元素与被卷积图像对应位置相乘,再求和。通过卷积核的不断移动,我们就有了一个新的图像,这个图像完全由卷积核在各个位置时的乘积求和的结果组成。
二维卷积在图像中的效果就是: 对图像的每个像素的邻域(邻域大小就是核的大小)加权求和得到该像素点的输出值。具体做法如下:

卷积运算一个重要的特点就是: 通过卷积运算,可以使原信号特征增强,并且降低噪音
不同的卷积核能够提取到图像中的不同特征,这里有 在线demo,下面是不同卷积核得到的不同的feature map,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值