力扣第二十九天(DP topic)

problem Ⅰ

509. Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n, calculate F(n).

Example 1:

Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.

Example 2:

Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.

Example 3:

Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

solution DP

class Solution {
public:
    int fib(int n) {
        if(!n)return 0;
        if(n==1)return 1;
        int st = 0, nd = 1;
        n--;
        while(n--){
            int tmp = nd;
            nd = st + nd;
            st = tmp;
        }
        return nd;
    }
};

在这里插入图片描述
NOTE:
this probem’s difficulty is easy, my solution use two temporary variables to store the status of DP

problem Ⅱ

1137. N-th Tribonacci Number
The Tribonacci sequence Tn is defined as follows:

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.

Given n, return the value of Tn.

Example 1:

Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

Example 2:

Input: n = 25
Output: 1389537

solution 1 DP

class Solution {
public:
    int tribonacci(int n) {
        if(!n)return 0;
        if(n==1 || n==2)return 1;
        int st=0, nd=1, rd=1;
        n -= 2;
        while(n--){
            int sum = st+nd+rd;
            st = nd;
            nd = rd;
            rd = sum;
        }
        return rd;
    }
};

solution 2 short code

class Solution {
public:
    int tribonacci(int n) {
        int dp[3] = {0, 1, 1};
        for(int i=3; i<=n; ++i)
            dp[i%3] += dp[(i+1)%3] + dp[(i+2)%3];
        return dp[n%3];
    }
};

在这里插入图片描述

problem Ⅲ

746. Min Cost Climbing Stairs
You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.

Return the minimum cost to reach the top of the floor.

Example 1:

Input: cost = [10,15,20]
Output: 15
Explanation: You will start at index 1.
- Pay 15 and climb two steps to reach the top.
The total cost is 15.

Example 2:

Input: cost = [1,100,1,1,1,100,1,1,100,1]
Output: 6
Explanation: You will start at index 0.
- Pay 1 and climb two steps to reach index 2.
- Pay 1 and climb two steps to reach index 4.
- Pay 1 and climb two steps to reach index 6.
- Pay 1 and climb one step to reach index 7.
- Pay 1 and climb two steps to reach index 9.
- Pay 1 and climb one step to reach the top.
The total cost is 6.

solution

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        for(int i=2; i<n; i++)
            cost[i] += min(cost[i-1], cost[i-2]);
        return min(cost[n-1], cost[n-2]);
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值